Chapter 2: Grammars

Aarne Ranta

Slides for the book "Implementing Programming Languages. An Introduction to Compilers and Interpreters", College Publications, 2012.

Grammars

Hands-on introduction to BNFC (the BNF Converter)

Step by step grammar writing

Lexer and parser generation

Testing grammars

Everything needed for solving Assignment 1 - a parser for a fragment of C++

Defining a language

A grammar is a systems of rules for a language.

Used for teaching languages at school:

- how words are formed (e.g. the plural of baby is babies)
- how words are combined to sentences (e.g. word order)

Used in linguistics to describe languages.

- remains an open problem: "all grammars leak"

Used in compilers to define languages.

- grammars are complete by definition

Example: a grammar of arithmetic expressions

EAdd. Exp ::= Exp "+" Exp1;
ESub. Exp $::=$ Exp "--" Exp1;
EMul. Exp1 ::= Exp1 "*" Exp2 ;
EDiv. Exp1 ::= Exp1 "/" Exp2 ;
EInt. Exp2 ::= Integer ;
coercions Exp 2 ;

Calc.cf, a labelled BNF grammar for integer arithmetic.

In words: expressions (Exp) are built with the operators,,$+-{ }^{*}$, and /, ultimately from integers.

Digit suffixes (Exp1, Exp2) and coercions to be explained later.

$\mathrm{BNF}=$ Backus Naur Form

(Named after John Backus and Peter Naur's work in the 1950-60's)

Routinely used for the specification of programming languages, appearing in language manuals.

The parser can be automatically derived from a BNF grammar.

The BNFC tool derives a parser and some other components.

Using BNFC

Install BNFC from the home page (Linux, Mac OS, Windows)

Then type, in a Unix-style shell,

bnfc

to get a usage message.

Type
bnfc -m Calc.cf
to process the file Calc.cf.

The system will respond by generating a bunch of files:

```
writing file AbsCalc.hs # abstract syntax
writing file LexCalc.x # lexer
writing file ParCalc.y # parser
writing file DocCalc.tex # language document
writing file SkelCalc.hs # syntax-directed translation skeleton
writing file PrintCalc.hs # pretty-printer
writing file TestCalc.hs # top-level test program
writing file ErrM.hs # monad for error handling
writing file Makefile # Makefile
```

These files are different components of a compiler.
Most of them are Haskell (.hs) files, but you can also say e.g.
bnfc -m -java Calc.cf
to generate the components for Java.

Running BNFC for Haskell

One of the generated files is a Makefile, which specifies the commands for compiling the compiler.

So now type
make
which succeeds if you have the Haskell tools GHC, Happy, Alex.

The process terminates with the message

Linking TestCalc ...

TestCalc is a program for testing the parser defined by Calc.cf.

Testing the parser

TestCalc reads Unix standard input:

$$
\text { echo " } 5+6 * 7 " \mid . / \text { TestCalc }
$$

Response:

Parse Successful!
[Abstract Syntax]
EAdd (EInt 5) (EMul (EInt 6) (EInt 7))
[Linearized tree]

$$
5+6 * 7
$$

The abstract syntax tree is the result of parsing.

The linearization is the string obtained from the tree by using the grammar in the opposite direction.

This linearization can be different from the input string, for instance, if the input has unnecessary parentheses.

Reading input from a file

With the standard input method:

```
./TestCalc < FILE_with_an_expression
```

With a file name argument:
./TestCalc FILE_with_an_expression

Running BNFC for Java

If you use Java rather:
bnfc -m -java Calc.cf
More files are generated:

Calc/Absyn/Exp.java	\# abstract syntax
Calc/Absyn/EAdd.java	
Calc/Absyn/ESub.java	
Calc/Absyn/EMul.java	
Calc/Absyn/EDiv.java	
Calc/Absyn/EInt.java	
Calc/PrettyPrinter.java \# pretty-printer	
Calc/VisitSkel.java \# syntax-directed translation skeleton	
Calc/ComposVisitor.java \# utilities for syntax-dir. transl	
Calc/AbstractVisitor.java	
Calc/FoldVisitor.java	
Calc/AllVisitor.java	
Calc/Test.java \# top-level test file Calc/Yylex \# lexer Calc/Calc.cup \# parser Calc.tex \# language document Makefile \# Makefile	

Compiling the Java files

The Makefile works exactly like before:
make

You need Javac, Cup, and JLex instead of the Haskell tools.

A common problem:
java JLex.Main Calc/Yylex
Exception in thread "main" java.lang.NoClassDefFoundError: JLex/Main make: *** [Calc/Yylex.java] Error 1

Fixing it:
export CLASSPATH=.:/usr/local/java/Cup:/usr/local/java

Running the Java parser
echo $" 5+6 * 7 " \mid$ java Calc/Test

Parse Successful!
[Abstract Syntax]
(EAdd (EInt 5) (EMul (EInt 6) (EInt 7)))
[Linearized Tree]
$5+6 * 7$

A summary of BNFC

We can use a BNF grammar to generate several compiler components:

- lexer, parser, linearizer, abstract syntax, test program

The components can be generated in different languages from the same BNF source:

- C, C++, C\#, Haskell, Java, OCaml

Rules and categories

A BNFC source file is a set of rules

Most rules have the format
Label . Category ::= Production ;

The Label and Category are identifiers (without quotes).

The Production is a sequence of two kinds of items:

- identifiers, called nonterminals
- string literals (strings in double quotes), called terminals

The semantics of a BNF rule
Label . Category ::= Production ;

A tree of type Category can be built with Label as the topmost node, from any sequence specified by the production, whose nonterminals give the subtrees of the tree built.

The type of the trees is a categories of the grammar, e.g. expression, statement, program,...

Tree labels are the constructors of those categories, i.e. the nodes of abstract syntax trees.

The tree for $5+6 * 7$

In linear notation (as in Haskell), as well as graphically
EAdd (EInt 5) (EMul (EInt 6) (EInt 7))
EAdd

Precedence levels

Why the is the EMul below the EAdd node? Why doesn't $5+6 * 7$ give EMul (EAdd (EInt 5) (EInt 6)) (EInt 7)

Answer: multiplication expressions have a higher precedence.

In BNFC, precedence levels are the digits attached to category symbols:

- Exp1 has precedence level 1,
- Exp2 has precedence level 2, etc.
- Exp is a shorthand for $\operatorname{Exp} 0$

The rule

EAdd. Exp ::= Exp "+" Exp1;

can be read:

EAdd forms an expression of level 0 from an expression of level 0 on the left of + and of level 1 on the right.

The rule
EMul. Exp1 $::=\operatorname{Exp} 1$ "*" $\operatorname{Exp} 2$;
can be read

EMul form an expression of level 1 from an expression of level 1 on the left of * and of level 2 on the right.

The semantics of precedence

All precedence variants of a nonterminal denote the same type in the abstract syntax.

- Thus $2,2+2$, and $2 * 2$ are all of type Exp.

An expression of higher level can always be used on lower levels as well.

- Thus $2+3$ is correct: integer literals have level 2 , but are here used on level 0 on the left and on level 1 on the right.

An expression of any level can be lifted to the highest level by putting it in parentheses.

- Thus $(5+6)$ is an expression of level 2 .

The coercions macro

If the highest precedence level is specified, BNFC can generate a bunch of rule.

Example:
coercions Exp 2
generates the "ordinary" BNF rules
_. $\operatorname{Exp} 0::=\operatorname{Exp} 1$;
_. Exp1 $::=\operatorname{Exp} 2$;
_. Exp2 ::= "(" Exp0 ")";

The underscore _ is a dummy label, which indicates that no constructor is added.

Abstract and concrete syntax

Abstract syntax trees are the hub of a modern compiler

- the target of the parser
- the place where most compilation phases happen, e.g. type checking and code generation

Abstract syntax is purely about structure:

- what are the immediate parts of this expression, and the parts of those parts?

Abstract syntax ignores the questions

- what do the parts look like
- what is the order of the parts (to some extent)

Example: from an abstract syntax point of view, all of the following expressions are the same:

$$
\begin{array}{ll}
2+3 & \text { Java, C (infix) } \\
(+23) & \text { Lisp (prefix) } \\
(23+) & \text { postfix } \\
\text { bipush 2 } & \text { JVM (postfix) } \\
\text { bipush 3 } & \\
\text { iadd } & \\
\text { the sum of 2 and 3 } & \text { English (prefix/mixfix) } \\
\text { 2:n ja 3:n summa } & \text { Finnish (postfix/mixfix) }
\end{array}
$$

The simplest possible compiler

1. Parse the source language expression, e.g. $2+3$.
2. Obtain an abstract syntax tree, EAdd (EInt 2) (EInt 3).
3. Linearize the tree to another format, bipush 2 bipush 3 iadd.

Not always so simple, though: the tree may have to be converted to another tree before code generation

- add type annotations
- optimize

Abstract and concrete syntax
A BNF grammar simultaneously specifies concrete syntax:

- what the expression parts look like
- what order they appear in
- precedences

BNFC rule

EAdd. $\operatorname{Exp} 0::=\operatorname{Exp} 0 "+" \operatorname{Exp} 1$
Its purely abstract syntax part ("skeleton")
EAdd. Exp ::= Exp Exp
which hides the actual symbol used for addition (and thereby the place where it appears). It also hides the precedence levels, since they don't imply any differences in the abstract syntax trees.

From concrete to abstract syntax

1. Remove all terminals.
2. Remove all precedence numbers.
3. Remove all coercions rules.

From Calc.cf, we obtain

EAdd. Exp $::=\operatorname{Exp} \operatorname{Exp} ;$
ESub. $\operatorname{Exp}::=\operatorname{Exp} \operatorname{Exp} ;$
EMul. Exp $::=\operatorname{Exp} \operatorname{Exp} ;$
EDiv. Exp $::=\operatorname{Exp} \operatorname{Exp} ;$
EInt. Exp $::=$ Integer ;

From abstract to concrete syntax

1. Add any terminals
2. Define precedences in any way you want

From the Calc.cf skeleton, you can obtain a JVM grammar

EAdd. Exp ::= Exp Exp "iadd";
ESub. Exp $::=\operatorname{Exp}$ Exp "isub" ;
EMul. Exp ::= Exp Exp "imul";
EDiv. Exp ::= Exp Exp "idiv" ;
EInt. Exp ::= "bipush" Integer ;

Abstract trees and parse trees

Abstract syntax trees (AST's)

- the nodes are constructors (i.e. labels of BNF rules).
- the leaves are constructors

Concrete syntax trees a.k.a. parse trees

- the nodes are category symbols (i.e. nonterminals)
- the leaves are tokens (i.e. terminals)

A parse tree is an accurate encoding of all BNF rules applied, and hence it shows all coercions between precedence levels and all tokens in the input string.

Abstract and concrete trees for $5+6 * 7$

Abstract syntax in Haskell

The BNF grammar is converted to a system of algebraic datatypes.

For Calc.cf, we obtain
data $\operatorname{Exp}=$
EAdd Exp Exp
ESub Exp Exp
EMul Exp Exp
EDiv Exp Exp
EInt Integer

Syntax-directed translation
Structural recursion on abstract syntax trees.
In Haskell, defined by pattern matching.
Example: a calculator, i.e. an interpreter for the language Calc:
module Interpreter where
import AbsCalc
eval :: Exp -> Integer
eval $\mathrm{x}=$ case x of
EAdd exp1 exp2 -> eval exp1 + eval exp2
ESub exp1 exp2 -> eval exp1 - eval exp2
EMul exp1 exp2 -> eval exp1 * eval exp2
EDiv $\exp 1 \exp 2->$ eval $\exp 1$ 'div‘ eval exp2
EInt n -> n

Turning the parser into an interpreter
Change the generated file TestCalc.hs: instead of showing the syntax tree, show the value from interpretation:
module Main where
import LexCalc
import ParCalc
import AbsCalc
import Interpreter
import ErrM
main $=$ do
interact calc
putStrLn ""
calc $\mathrm{s}=$ let Ok e $=\mathrm{pExp}($ myLexer s) in show (interpret e)

Using the calculator

Put your Main module in a file named Calculator.hs.

Compile it with GHC as follows:
ghc --make Calculator.hs

Run it on command-line input:
echo " $1+2$ * 3 " | ./Calculator
7

A compiler in a nutshell

1. Write a grammar and convert it into parser and other modules.
2. Write some code that manipulates syntax trees in a desired way.
3. Let the main file output the results of syntax tree manipulation.

Now, let's do the same thing in Java.

Abstract syntax in Java

Java has no notation for algebraic datatypes. Use classes instead:

- For each category, an abstract base class.
- For each constructor of the category, a class extending the base class.

In the case of Calc.cf, we have

Calc/Absyn/EAdd.java
Calc/Absyn/EDiv.java
Calc/Absyn/EInt.java
Calc/Absyn/EMul.java
Calc/Absyn/ESub.java
Calc/Absyn/Exp.java

What class looks like

```
public abstract class Exp implements java.io.Serializable {
}
public class EAdd extends Exp {
    public final Exp exp_1, exp_2;
    public EAdd(Exp p1, Exp p2) { exp_1 = p1; exp_2 = p2; }
}
public class EAdd extends Exp {
    public final Exp exp_1, exp_2;
    public ESub(Exp p1, Exp p2) { exp_1 = p1; exp_2 = p2; }
}
public class EAdd extends Exp {
    public final Exp exp_1, exp_2;
    public EMul(Exp p1, Exp p2) { exp_1 = p1; exp_2 = p2; }
}
public class EAdd extends Exp {
    public final Exp exp_1, exp_2;
    public EDiv(Exp p1, Exp p2) { exp_1 = p1; exp_2 = p2; }
}
public class EInt extends Exp {
    public final Integer integer_;
    public EInt(Integer p1) { integer__ = p1; }
}
```

Tree manipulation in Java

Java doesn't have pattern matching.

But there are three ways out:

1. Add an interpreter method to each class.
2. Use a separate visitor interface to implement tree traversal in a general way.
3. Use the instanceof type comparison operator (generated by BNFC with -java1.4 option, but not recommended by Java purists).

We choose the first method here.

The visitor method is the best choice in more advanced applications, later.

The interpreter in Java

Take the classes generated in Calc/Absyn/ by BNFC, and add an eval method to each of them:

```
public abstract class Exp {
    public abstract Integer eval();
}
public class EAdd extends Exp {
    public final Exp exp_1, exp_2;
    public EAdd(Exp p1, Exp p2) { exp_1= p1; exp_2= p2; }
    public Integer eval() {return exp_1.eval() + exp_2.eval() ;}
}
public class ESub extends Exp {
    public final Exp exp_1, exp_2;
    public ESub(Exp p1, Exp p2) { exp_1 = p1; exp_2 = p2; }
    public Integer eval() {return exp_1.eval() - exp_2.eval();}
}
public class EMul extends Exp {
    public final Exp exp_1, exp_2;
    public EMul(Exp p1, Exp p2) { exp_1= p1; exp_2=p2;}
    public Integer eval() {return exp_1.eval() * exp_2.eval() ;}
}
public class EDiv extends Exp {
    public final Exp exp_1, exp_2;
    public EDiv(Exp p1, Exp p2) { exp_1 = p1; exp_2 = p2; }
```

```
    public Integer eval() {return exp_1.eval() / exp_2.eval() ;}
}
public class EInt extends Exp {
    public final Integer integer_;
    public EInt(Integer p1) { integer__ = p1; }
    public Integer eval() {return integer_ ;}
}
```

The top-level calculator class

Change the file Calc/Test.java into a calculator:

```
public class Calculator {
        public static void main(String args[]) throws Exception
        {
            Yylex l = new Yylex(System.in);
            parser p = new parser(l) ;
            Calc.Absyn.Exp parse_tree = p.pExp();
            System.out.println(parse_tree.eval());
    }
}
```

(omitting error handling for simplicity.)

Using the Java calculator
Compile it:
javac Calc/Calculator.java
Run it:
echo " $1+2$ * 3 " | java Calc/Calculator
7

Run it on file input:
java Calc/Calculator < ex1.calc
9102

The file ex1.calc contains the text
$(123+47-6) * 222 / 4$

List categories

Lists of various kinds are used everywhere in grammars.

Standard BNF: a pair of rules ("Nil" for the empty list, and "Cons") for adding an element.

Example: list of definitions (Def):

NilDef. ListDef $::=$;
ConsDef. ListDef ::= Def ListDef ;

Terminators

A terminator is a token that appear after every item of a list.

For instance, definitions might have semicolons (;) as terminators:

NilDef. ListDef ::=;
ConsDef. ListDef ::= Def ";" ListDef ;

This common pattern is generated by the macro
terminator Def ";";

If no terminator is used, we can give an "empty terminator",
terminator Def "";

This generates the pair of rules on the previous slide.

Separators

A separators is a token that appears between list items, just not after the last one.

Example: the list of arguments of a function in C has a comma (,) as separator. We write separator Exp ",";

This shorthand expands to a set of rules for the category ListExp.

The rule for function calls can now be written

ECall. Exp ::= Ident "(" ListExp ")";

The list category notation
Instead of ListExp, BNFC programmers can use the bracket notation for lists, [Exp].
Example: an alternative formulation of the ECall rule is

ECall. Exp ::= Ident "(" [Exp] ")" ;

The notation is borrowed from Haskell. But it translates to all target languages of BNFC:

- in Haskell, [C] is represented as [C]
- in Java, $[\mathrm{C}]$ is represented as java.util.LinkedList<C>

Nonempty lists

Lists that have at least one element

```
terminator nonempty Def "";
separator nonempty Ident ",";
```

Their internal representations are still lists in the host language, but the parser never returns an empty list

Specifying the lexer

Simplest way: just use predefined token types as categories:

- Integer, integer literals: sequence of digits, e.g. 123445425425436 ;
- Double, float literals: two sequences of digits with a decimal point in between, possibly with an exponent after, e.g. 7.098e-7;
- String, string literals: any characters between double quotes, e.g. "hello world", with a backslash (\backslash) escaping a quote and a backslash;
- Char, character literals: any character between single quotes, e.g. 'x' and '7';
- Ident, identifiers: a letter (A..Za..z) followed by letters, digits, and characters _ or ', e.g. r2_out'

User-defined token types

By regular expressions.

For instance, a type upper-case identifiers:
token UIdent (upper (letter | digit | ' $\left.\left.{ }^{\prime}\right)^{*}\right)$;

Regular expressions available in BNFC

name	notation	explanation
symbol	'a'	the character a
sequence	A B	A followed by B
union	A \mid B	A or B
closure	A* *	any number of A's (possibly 0)
empty	eps	the empty string
character	char	any character (ASCII 0..255)
letter	letter	any letter (A..Za..Z)
upper-case letter	upper	any upper-case letter (A..Z)
lower-case letter	lower	any lower-case letter (a..Z)
digit	digit	any digit (0..9)
option	A?	optional A
difference	A - B	A which is not B

Position tokens

To remember the position of a token.

Useful in error messages at later compilation phases.

Just add the keyword position to a token definition:

$$
\text { position token CIdent (letter | (letter | digit | ' }{ }^{\prime} \text { ')*) ; }
$$

Position token types are represented with pairs of integers indicating the line and the column in the input:
newtype CIdent $=$ CIdent $($ String,$($ Int,Int $))$

Comments

Comments are parts of source code that the compiler ignores.

BNFC permits the definition of two kinds of comments:

- single-line comments, which run from a start token till the end of the line;
- arbitrary-length comments, which run from a start token till a closing token.

Example: comments in C are defined as follows:

```
comment "//";
comment "/*" "*/" ;
```

Since comments are resolved by the lexer, they are processed by using a finite automaton. Therefore nested comments are not possible. A more thorough explanation of this will be given in next chapter.

Working out a grammar

We conclude this section by working out a grammar for a small C-like programming language. This language is the same as targeted by the Assignments 2 to 4 at the end of this book, called CPP.

We go through the language constructs top-down, i.e. from the largest to the smallest, and build the appropriate rules at each stage.

The reader is advised to copy all the rules of this section into a file and try this out in BNFC, with various programs as input. The grammar is also available on the book web page.

- A program is a sequence of definitions.

This suggests the following BNFC rules:

PDefs. Program ::= [Def]; terminator Def "" ;

- A program may contain comments, which are ignored by the parser. Comments can start with the token // and extend to the end of the line. They can also start with /* and extend to the next */.

This means C-like comments, which are specified as follows:

```
comment "//";
comment "/*" "*/";
```

- A function definition has a type, a name, an argument list, and a body. An argument list is a comma-separated list of argument declarations enclosed in parentheses (and). A function body is a list of statements enclosed in curly brackets $\{$ and $\}$. For example:
int foo(double x , int y)
\{ return y +9 ;
\}

We decide to specify all parts of a function definition in one rule, in addition to which we specify the form of argument and statement lists:

DFun. Def $::=$ Type Id "(" [Arg] ")" "\{" [Stm] "\}";
separator Arg ",";
terminator Stm "";

- An argument declaration has a type and an identifier.

ADecl. Arg $::=$ Type Id ;

- Any expression followed by a semicolon ; can be used as a statement.

SExp. Stm ::= Exp ";";

- Any declaration followed by a semicolon ; can be used as a statement. Declarations have one of the following formats:
- a type and one variable (as in function parameter lists),
int i ;
- a type and many variables,

$$
\text { int } \mathrm{i}, \mathrm{j} ;
$$

- a type and one initialized variable,

$$
\text { int } \mathrm{i}=6 \text {; }
$$

Now, we could reuse the function argument declarations Arg as one kind of statements. But we choose the simpler solution of restating the rule for one-variable declarations.

SDecl. Stm ::= Type Id ";";
SDecls. Stm ::= Type Id "," [Id] ";";
SInit. Stm $::=$ Type Id "=" Exp ";";

- Statements also include
- Statements returning an expression,
return i +9 ;
- While loops, with an expression in parentheses followed by a statement, while $(\mathrm{i}<10)++\mathrm{i}$;
- Conditionals: if with an expression in parentheses followed by a statement, else, and another statement,
if $(x>0)$ return x; else return y;
- Blocks: any list of statements (including the empty list) between curly brackets. For instance,
\{ int $\mathrm{i}=2$;
\{
\}
i++;
\}
The statement specifications give rise to the following BNF rules:

SReturn. Stm ::= "return" Exp ";";
SWhile. Stm ::= "while" "(" Exp ")" Stm ;
SBlock. Stm $::="\{"[S t m]$ " $\} " ;$
SIfElse. Stm ::= "if" "(" Exp ")" Stm "else" Stm ;

- Expressions are specified with the following table that gives their precedence levels. Infix operators are assumed to be left-associative, except assignments, which are right-associative. The arguments in a function call can be expressions of any level. Otherwise, the subexpressions are assumed to be one precedence level above the main expression.

level	expression forms	explanation	
15	literal	literal (integer, float, string, boolean)	
15	identifier	variable	
15	$\mathrm{f}(\mathrm{e}, \ldots, \mathrm{e})$	function call	
14	$\mathrm{v}++, \mathrm{v}-$	post-increment, post-decrement	
13	$++\mathrm{v},-\mathrm{v}$	pre-increment, pre-decrement	
13	-e	numeric negation	
12	$\mathrm{e}^{*} \mathrm{e}, \mathrm{e} / \mathrm{e}$	multiplication, division	
11	$\mathrm{e}+\mathrm{e}, \mathrm{e}-\mathrm{e}$	addition, subtraction	
9	$\mathrm{e}<\mathrm{e}, \mathrm{e}>\mathrm{e}, \mathrm{e}>=\mathrm{e}, \mathrm{e}<=\mathrm{e}$	comparison	
8	$\mathrm{e}==\mathrm{e}, \mathrm{e}!=\mathrm{e}$	(in)equality	
4	$\mathrm{e} \& \& \mathrm{e}$	conjunction	
3	$\mathrm{e} \\| \mathrm{e}$	disjunction	
2	$\mathrm{v}=\mathrm{e}$	assignment	

The table is straightforward to translate to a set of BNFC rules. On the level of literals, integers and floats ("doubles") are provided by BNFC, whereas the boolean literals true and false are defined by special rules.

EInt. Exp15 ::= Integer;
EDouble. Exp15 ::= Double ;
EString. Exp15 ::= String ;
ETrue. Exp $15::=$ "true";
EFalse. Exp15 ::= "false";
EId. Exp15 ::= Id;

ECall. Exp15 ::= Id "(" [Exp] ")";

EPIncr. Exp14 ::= Exp15 "++";
EPDecr. Exp14 ::= Exp15 "--" ;

EIncr. Exp13 ::="++" Exp14;

EDecr. Exp13 ::= "--" Exp14;
ENeg. Exp13 ::= "-" Exp14;

EMul. Exp12 ::= Exp12 "*" Exp13;
EDiv. Exp12 ::= Exp12 "/" Exp13;
EAdd. Exp11 ::= Exp11 "+" Exp12;
ESub. Exp11 ::= Exp11 "-" Exp12;
ELt. Exp9 ::= Exp9 "<" Exp10;
EGt. Exp9 ::= Exp9 ">" Exp10;
ELEq. Exp9 ::= Exp9 "<=" Exp10;
EGEq. Exp9 ::= Exp9 ">=" Exp10;
EEq. Exp8 ::= Exp8 "==" Exp9 ;
ENEq. Exp8 ::= Exp8 "!=" Exp9 ;
EAnd. Exp4 ::= Exp4 "\&\&" Exp5;
EOr. Exp3 ::= Exp3 "||" Exp4;
EAss. Exp2 ::= Exp3 "=" Exp2 ;

Finally, we need a coercions rule to specify the highest precedence level, and a rule to form function argument lists.
coercions Exp 15 ;
separator Exp ",";

- The available types are bool, double, int, string, and void.

Tbool. Type ::= "bool" ;
Tdouble. Type ::= "double";
Tint. Type $::=$ "int" ;
Tstring. Type ::= "string";
Tvoid. Type ::= "void";

- An identifier is a letter followed by a list of letters, digits, and underscores.

Here we cannot use the built-in Ident type of BNFC, because apostrophes (') are not permitted! But we can define our identifiers easily by a regular expression:

$$
\text { token Id (letter (letter | digit | ' ' ') }{ }^{*} \text {) ; }
$$

Alternatively, we could write position token Id (letter (letter | digit | ${ }^{\prime}$ ' $\left.\left.^{\prime}\right)^{*}\right)$;
to remember the source code positions of identifiers.

