
Programming Language Technology

Exam, 15 January 2026 at 8.30 – 12.30 in HB 1-4

Course codes: Chalmers DAT151, GU DIT231.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 9:30 and 11:30.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: 28 January 2026 14.30-15.30 in EDIT meeting room 6128 (6th floor).

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
kinds of constructs of C/C++/Java (sublanguage of lab 2):

• Program: a sequence of function definitions.
• Function definition: type followed by identifier, comma-separated parameter list in
parentheses, and block.

• Parameter: type followed by identifier, e.g. int x.
• Block: a sequence of statements enclosed between { and }
• Statements:

– block
– initializing variable declaration, e.g., int x = 42;
– expression followed by semicolon
– while statement

• Expressions, from highest to lowest precedence:
– atoms: identifier, integer literal, function call
– addition (+), left associative
– less-or-equal-than integer comparison (<=), non-associative
– assignment, right associative

Putting an expression into parentheses makes it an atom.
• Type: void or int or bool

Line comments are started by #. You can use the standard BNFC categories Integer
and Ident and any of the BNFC pragmas (coercions, terminator, separator ...). An
example program is:

#include <stdio.h>

#define printInt(x) printf("%d\n",x)

void fib(int n) {

int i = 0; int cur = 0; int next = 1;

while ((i = i + 1) <= n) { int tmp = next; next = tmp + cur; cur = tmp; }

printInt(cur);

}

(10p)

1

SOLUTION:

Program. Prg ::= [Def] ;

DFun. Def ::= Type Ident "(" [Arg] ")" "{" [Stm] "}" ;

terminator Def "" ;

ADecl. Arg ::= Type Ident ;

separator Arg "," ;

SBlock. Stm ::= "{" [Stm] "}" ;

SInit. Stm ::= Type Ident "=" Exp ";" ;

SExp. Stm ::= Exp ";" ;

SWhile. Stm ::= "while" "(" Exp ")" Stm ;

terminator Stm "" ;

EId. Exp2 ::= Ident ;

EInt. Exp2 ::= Integer ;

ECall. Exp2 ::= Ident "(" [Exp] ")" ;

EPlus. Exp1 ::= Exp1 "+" Exp2 ;

ELtEq. Exp ::= Exp1 "<=" Exp1 ;

EAss. Exp ::= Ident "=" Exp ;

coercions Exp 2 ;

separator Exp "," ;

TInt. Type ::= "int" ;

TBool. Type ::= "bool" ;

TVoid. Type ::= "void" ;

comment "#" ;

2

Question 2 (Compilation Phases):

1. List the names of the phases of a compiler in the order they execute in the lab 3
compiler. (1p)

2. Each of the following snippets (from the C– language of lab 2) contains one error.
For each of the snippets, write the name of the compilation phase in which this
error ought to be detected and reported. (4p)

(a) while ((i == i + 1) <= n) { int t = x; x = t + c; c = t; }

(b) while ((i = i + 1) <= n) { int t = x; x = t + ; c = t; }

(c) while ((i = i + 1) <= n) { int t = x; x = t + c; int t = 0; }

(d) while ((i = i "+ 1) <= n) { int t = x; x = t + c; c = t; }

CLARIFICATION: The variables i, n, x and c are assumed to be in scope and
of type int.

SOLUTION:

1. lexing, parsing, type checking, code generation

2. (a) type checking

(b) parsing

(c) type checking

(d) lexing

Question 3 (LR Parsing): Consider the following labeled BNF-Grammar.

Sub. E ::= E "-" E ;

One. E ::= "1" ;

Two. E ::= "2" ;

Three. E ::= "3" ;

We work with the following example string:

3 - 2 - 1

1. The grammar is ambiguous. Show this by giving two different parse trees for the
example string.

2. The LR parser generated for this grammar has a shift-reduce conflict.

Step by step, trace the parsing of the example string showing how the stack and
the input evolve and which actions are performed. Resolve any shift-reduce conflict
in favor of shift.

Which of the two parse trees is produced by this run?

3

3. Now do the trace again, this time resolving conflicts in favor of reduce.

Which of the two parse trees is produced by that run?

(8p)

SOLUTION:

1. Parsetrees for right associative (shift) and left associative (reduce) reading:

Two One

Three Sub

Sub

Three Two

Sub One

Sub

2. The actions are shift, reduce with rule(s), and accept. Stack and input are
separated by a dot.

. ’3’ ’-’ ’2’ ’-’ ’1’ -- shift

’3’ . ’-’ ’2’ ’-’ ’1’ -- reduce with rule Three

E . ’-’ ’2’ ’-’ ’1’ -- shift 2x

E ’-’ ’2’ . ’-’ ’1’ -- reduce with rule Two

E ’-’ E . ’-’ ’1’ -- *shift* 2x

E ’-’ E ’-’ ’1’ . -- reduce with rule One

E ’-’ E ’-’ E . -- reduce with rule Sub

E ’-’ E . -- reduce with rule Sub

E . -- halt

This run produces the first parse tree (right associative).

3. This run differs once we have L , L on the stack:

E ’-’ E . -- *reduce* with rule Sub

E . ’-’ ’1’ -- shift 2x

E ’-’ ’1’ . -- reduce with rule One

E ’-’ E . -- reduce with rule Sub

E . -- halt

It produces the second parse tree (left associative).

4

Question 4 (Type checking and evaluation):

1. Write syntax-directed typing rules for the expressions of Question 1. Alternatively,
you can write the type-checker in pseudo code or Haskell. Functions lookupVar and
lookupFun can be assumed. In any case, the typing environment must be made
explicit. (6p)

SOLUTION: The type checking judgement Γ ⊢Σ e : t for expressions is the least
relation closed under the following rules.

Γ ⊢Σ x : Γ(x) Γ ⊢Σ i : int

Γ ⊢Σ e1 : int Γ ⊢Σ e2 : int

Γ ⊢Σ e1 + e2 : int

Γ ⊢Σ e1 : int Γ ⊢Σ e2 : int

Γ ⊢Σ e1 ≤ e2 : bool

Γ ⊢Σ e : t

Γ ⊢Σ x = e : t
Γ(x) = t

Γ ⊢Σ e1 : t1 . . . Γ ⊢Σ en : tn
Γ ⊢Σ f(e1, . . . , en) : t

Σ(f) = (t1, . . . , tn) → t

Herein, Γ is a finite map from identifiers x to types t, and Σ a finite map from
identifiers f to function types (t1, . . . , tn) → t.

2. Write syntax-directed interpretation rules for the statements, blocks and statement
sequences of Question 1, assuming an interpreter for expressions γ ⊢ e ⇓ ⟨v; γ′⟩.
Alternatively, you can write the interpreter in pseudo code or Haskell. Functions
evalExp and lookupVar can be assumed. In any case, the environment must be
made explicit. (7p)

SOLUTION: The evaluation judgement γ ⊢ ss ⇓ γ′ for statement sequences is
the least relation closed under the following rules.

γ ⊢ ε ⇓ γ

γ ⊢ s ⇓ γ′ γ′ ⊢ ss ⇓ γ′′

γ ⊢ s ss ⇓ γ′′

The evaluation judgement γ ⊢ s ⇓ r for statements with result r ::= v | γ′ is the
least relation closed under the following rules.

γ. ⊢ ss ⇓ γ′.δ

γ ⊢ {ss} ⇓ γ′
(γ, x=void) ⊢ e ⇓ γ′

γ ⊢ t x = e; ⇓ (γ′, x=v)

γ ⊢ e ⇓ ⟨v; γ′⟩
γ ⊢ e; ⇓ γ′

γ ⊢ e ⇓ ⟨false; γ′⟩
γ ⊢ while (e) s ⇓ γ′

γ ⊢ e ⇓ ⟨true; γ′⟩ γ′ ⊢ s ⇓ γ′′ γ′′ ⊢ while (e) s ⇓ γ′′′

γ ⊢ while (e) s ⇓ γ′′′

Herein, environment γ is a dot-separated list of blocks δ, each of which is a finite
map from identifiers x to values v. We write ε for the empty sequence or empty
map and γ, x = v for extending the top block of γ by the binding x = v.

5

Question 5 (Compilation):

1. Statement by statement, translate the example program of Question 1 to Jasmin.
(Do not optimize the program before translation!)

It is not necessary to remember exactly the names of the JVM instructions—only
what arguments they take and how they work.

Make clear which instructions come from which statement, and determine the stack
and local variable limits. (8p)

SOLUTION:

.method public static fib(I)V

.limit locals 5

.limit stack 2

;; int i = 0;

iconst_0

istore_1

;; int cur = 0;

iconst_0

istore_2

;; int next = 1;

iconst_1

istore_3

;; while ((i = i + 1) <= n)

goto L1

L0:

;; int tmp = next;

iload_3

istore 4

;; next = tmp + cur;

iload 4

iload_2

iadd

istore_3

6

;; cur = tmp;

iload 4

istore_2

L1:

iload_1

iconst_1

iadd

istore_1

iload_1

iload_0

if_icmple L0

;; printInt (cur);

iload_2

invokestatic Runtime/printInt(I)V

return

.end method

2. Give the small-step semantics of the JVM instructions you used in the Jasmin code
in part 1 (except for function call and return instructions). Write the semantics
in the form

i : (P, V, S) −→ (P ′, V ′, S ′)

where (P, V, S) is the program counter, variable store, and stack before execution
of instruction i, and (P ′, V ′, S ′) are the respective values after the execution. For
adjusting the program counter, you can assume that each instruction has size 1.
(6p)

SOLUTION: Stack S.v shall mean that the top value on the stack is v, the rest is
S. Jump targets L are used as instruction addresses, and P + 1 is the instruction
address following P .

instruction state before state after
iload a (P, V, S) → (P + 1, V, S.V (a))
istore a (P, V, S.v) → (P + 1, V [a := v], S)
iconst i (P, V, S) → (P + 1, V, S.i)
iadd (P, V, S.v.w) → (P + 1, V, S.(v + w))
goto L (P, V, S) → (L, V, S)
if icmple L (P, V, S.v.w) → (L, V, S) if v ≤ w
if icmple L (P, V, S.v.w) → (P + 1, V, S) unless v ≤ w

7

Question 6 (Functional languages):

1. The following grammar describes a tiny simply-typed sub-language of Haskell.

x identifier
i ::= 0 | 1 | −1 | 2 | −2 | . . . integer literal
e ::= i | e+ e | x | λx → e | e e expression
t ::= Int | t → t type

Application e1 e2 is left-associative, the arrow t1 → t2 is right-associative. Application
binds strongest, then addition, then λ-abstraction.

For the following typing judgements Γ ⊢ e : t, decide whether they are valid or not.
Your answer can be just “valid” or “not valid”, but you may also provide a justification
why some judgement is valid or invalid.

(a) a : Int, b : Int → Int ⊢ (λc → 0 + b) a : Int
(b) a : (Int → Int) → Int ⊢ λb → b (a b) : (Int → Int) → Int
(c) a : (Int → Int) → Int ⊢ λb → a (a b) : (Int → Int) → Int
(d) a : Int → Int ⊢ λb → a (a b+ a 0) : Int → Int
(e) a : (Int → Int) → (Int → Int) ⊢ (λb → a b) (λa → 1) : Int → Int

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point
for a wrong answer −1 points. If you choose not to give an answer for a judgement, you
get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative
sum is rounded up to 0. (5p)

SOLUTION:

(a) not valid (cannot add 0 to function)
(b) valid
(c) not valid
(d) valid
(e) valid

8

2. For each of the following terms, decide whether it evaluates more efficiently (in the
sense of fewer reductions) in call-by-name or call-by-value. Your answer can be just “call-
by-name” or “call-by-value”, but you can also add a justification why you think so. Same
rules for multiple choice as in part 1. (5p)

(a) (λx → λy → x+ x+ x) (1 + 2 + 3) (4 + 5 + 6 + 7)
(b) (λx → λy → x+ x+ x) (1 + 2) (3 + 4 + 5 + 6)
(c) (λx → x) ((λy → λz → z + z + z) (1 + 2 + 3 + 4) (5 + 6))
(d) (λx → λy → y + y) ((λz → z z)(λz → z z)) (1 + 2 + 3)
(e) (λx → λy → y + y + y) (λu → (λz → z z)(λz → z z)) (1 + 2)

SOLUTION:

(a) call-by-value (7 additions vs. 8)
(b) call-by-name (5 additions vs. 6)
(c) call-by-name (5 additions vs. 6)
(d) call-by-name (diverges in call-by-value)
(e) call-by-value (3 additions vs. 5)

9

