
Programming Language Technology

Exam, 16 January 2025, 8.30–12.30 in HA1-4

Course codes: Chalmers DAT151, GU DIT231.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 9:30 and 11:00.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Wed 29 January 2024 14.30-15.30 in room EDIT 6128.

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
kinds of constructs of C/C++ (sublanguage of lab 2):

• Program: a sequence of function definitions.
• Function definition: type bool followed by identifier, comma-separated parameter
list in parentheses, and block.

• Parameter: type bool followed by identifier, e.g. bool x.
• Block: a sequence of statements enclosed between { and }

• Statements:
– block
– initializing variable declaration, e.g., bool x = true;

– expression followed by semicolon
– return statement
– while statement

• Expressions, from highest to lowest precedence:
– atoms: identifier, boolean literal (true or false), function call
– conjunction (&&), left associative
– disjunction (||), left associative
– assignment, right associative

Wrapping an expression in parentheses makes it an atom.
Line comments are started by #. You can use the standard BNFC category Ident and
any of the BNFC pragmas (coercions, terminator, separator ...). Example program:

#include <stdio.h>

#define printBool(x) printf("%d\n",x)

#define bool int

bool f (bool y, bool z) {

y = z || y;

while (y && z) { bool y = true; printBool (y = z); z = false; }

return y;

}

bool main () { return f (false, true); }

(10p)
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SOLUTION:

Program. Prg ::= [Def] ;

DFun. Def ::= Type Ident "(" [Arg] ")" "{" [Stm] "}" ;

terminator Def "" ;

ADecl. Arg ::= Type Ident ;

separator Arg "," ;

SBlock. Stm ::= "{" [Stm] "}" ;

SDecl. Stm ::= Type Ident "=" Exp ";" ;

SExp. Stm ::= Exp ";" ;

SReturn. Stm ::= "return" Exp ";" ;

SWhile. Stm ::= "while" "(" Exp ")" Stm ;

terminator Stm "" ;

EId. Exp3 ::= Ident ;

ETrue. Exp3 ::= "true" ;

EFalse. Exp3 ::= "false" ;

ECall. Exp3 ::= Ident "(" [Exp] ")" ;

EAnd. Exp2 ::= Exp2 "&&" Exp3 ;

EOr. Exp1 ::= Exp1 "||" Exp2 ;

EAss. Exp ::= Ident "=" Exp ;

coercions Exp 3 ;

separator Exp "," ;

TBool. Type ::= "bool" ;

comment "#" ;
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Question 2 (Lexing): Consider the alphabet Σ = {a, b} and the language L =
{waa,wab | w ∈ Σ∗} of words that end in aa or ab.

1. Give a regular expression for language L.

2. Give a non-deterministic finite automation for L.

3. Give a minimal deterministic finite automaton for L.

(6p)

SOLUTION:

1. RE: (a+ b)∗a(a+ b)

2. NFA:

// w

a,b

��
a // wa

a,b // wac

Of course, the following DFA would also be a possible solution for the NFA. (Every
DFA is trivially a NFA.)

3. DFA:

// bb

b

��
a // ba
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Question 3 (Parsing): Consider the following BNF-Grammar (written in bnfc syn-
tax). The starting non-terminal is S.

S1. S ::= S ";" T ;

S2. S ::= T ;

T1. T ::= T "&" A ;

T2. T ::= A ;

AX. A ::= "x" ;

AY. A ::= "y" ;

AZ. A ::= "z" ;

Step by step, trace the LR-parsing of the expression

x&y;z

showing how the stack and the input evolves and which actions are performed. (6p)

SOLUTION: The actions are shift, reduce with rule, and accept. Stack and
input are separated by a dot.

. x & y ; z -- shift

x . & y ; z -- reduce with rule AX

A . & y ; z -- reduce with rule T2

T . & y ; z -- shift

T & . y ; z -- shift

T & y . ; z -- reduce with rule AY

T & A . ; z -- reduce with rule T1

T . ; z -- reduce with rule S2

S . ; z -- shift

S ; . z -- shift

S ; z . -- reduce with rule AZ

S ; A . -- reduce with rule T2

S ; T . -- reduce with rule S1

S . -- accept
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Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and blocks of
Question 1. The form of the typing judgements should be Γ ⊢t s ⇒ Γ′ where s is a
statement or list of statements, t the return type, Γ is the typing context before s,
and Γ′ the typing context after s. Observe the scoping rules for variables! You can
assume a type-checking judgement Γ ⊢ e : t for expressions e.

Alternatively, you can write the type checker in pseudo code or Haskell (then assume
checkExpr to be defined). In any case, the typing environment and the return type
must be made explicit. (6p)

SOLUTION: A context Γ is a stack of blocks ∆, separated by a dot. Each
block ∆ is a map from variables x to types t. We write ∆, x:t for adding the
binding x 7→ t to the map. Duplicate declarations of the same variable in the same
block are forbidden; with x ̸∈ ∆ we express that x is not bound in block ∆. We
refer to a judgement Γ ⊢ e : t, which reads “in context Γ, expression e has type t”.

Γ. ⊢t ss ⇒ Γ.∆

Γ ⊢t {ss} ⇒ Γ

Γ.∆, x:t′ ⊢ e : t′

Γ.∆ ⊢t t′ x = e; ⇒ (Γ.∆, x:t′)
x ̸∈ ∆

Γ ⊢ e : t′

Γ ⊢t e; ⇒ Γ

Γ ⊢ e : t

Γ ⊢t return e; ⇒ Γ

Γ ⊢ e : bool Γ. ⊢t s ⇒ Γ.∆

Γ ⊢t while (e) s ⇒ Γ

This judgement for statements is extended to sequences of statements Γ ⊢t ss ⇒ Γ′

by the following rules (ε stands for the empty sequence):

Γ ⊢t ε ⇒ Γ

Γ ⊢t s ⇒ Γ′ Γ′ ⊢t ss ⇒ Γ′′

Γ ⊢t s ss ⇒ Γ′′
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2. Write syntax-directed interpretation rules for the expressions of Question 1. The
form of the evaluation judgement should be γ ⊢ e ⇓ ⟨v; γ′⟩ where e denotes the
expression to be evaluated in environment γ and the pair ⟨v; γ′⟩ denotes the resulting
value and updated environment. You can assume a judgement γ ⊢ ss ⇓ v stating
that statements ss return value v in environment γ.

Alternatively, you can write the interpreter in pseudo code or Haskell (then assume
a function evalStms to be defined). A function lookupVar can be assumed if its
behavior is described. In any case, the environment must be made explicit. (8p)

SOLUTION: We define a judgement γ ⊢ e ⇓ ⟨v; γ′⟩ to evaluate expression e in
environment γ an return its value v and a possibly updated environment γ′. The
judgement is the least relation closed under the following rules.

γ ⊢ false ⇓ ⟨0; γ⟩ γ ⊢ true ⇓ ⟨1; γ⟩

γ ⊢ e1 ⇓ ⟨0; γ′⟩
γ ⊢ e1 && e2 ⇓ ⟨0; γ′⟩

γ ⊢ e1 ⇓ ⟨1; γ1⟩ γ1 ⊢ e2 ⇓ r

γ ⊢ e1 && e2 ⇓ r

γ ⊢ e1 ⇓ ⟨1; γ′⟩
γ ⊢ e1 || e2 ⇓ ⟨1; γ′⟩

γ ⊢ e1 ⇓ ⟨0; γ1⟩ γ1 ⊢ e2 ⇓ r

γ ⊢ e1 || e2 ⇓ r

γ ⊢ x ⇓ ⟨γ(x); γ⟩
γ ⊢ e ⇓ ⟨v; γ′⟩

γ ⊢ x=e ⇓ ⟨v; γ′[x = v]⟩⟩

γ0 ⊢ e1 ⇓ ⟨v1; γ1⟩ . . . γn−1 ⊢ en ⇓ ⟨vn; γn⟩ x1=v1, . . . , xn=vn ⊢ ss ⇓ v

γ0 ⊢ f(e1, . . . ,en) ⇓ ⟨v; γn⟩
with function definition t f (t1 x1, . . . tn xn) {ss}

Herein, environment γ is map from identfiers to integers. We use r for a result of
the form ⟨v; γ⟩. Boolean true is represented by integer 1, and false by 0. We write
γ[x = v] for a new environment that copies γ and updates the value of x to v.

Question 5 (Compilation):

1. Statement by statement, translate the function f of the example program of Ques-
tion 1 to Jasmin. Do not optimize the program before translation!

To translate the call to printBool, assume a Java class Runtime with a method
void printBool(boolean).

It is not necessary to remember exactly the names of the JVM instructions—only
what arguments they take and how they work. But note that machines like JVM
do not have instructions for boolean operators (like && and ||), thus, you have to
use conditional jumps.

Make clear which instructions come from which statement, and determine the stack
and local variable limits. (7p)
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SOLUTION:

.method public static f(ZZ)Z

.limit locals 3

.limit stack 1

;; y = z || y;

iload_1 ;; z

ifne Ltrue ;; true?

iload_0 ;; y

ifne Ltrue ;; true?

iconst_0 ;; false

goto Ljoin

Ltrue: iconst_1 ;; true

Ljoin: istore_0 ;; y =

;; while (y && z)

Lstart: iload_0 ;; y

ifeq Ldone ;; false?

iload_1 ;; z

ifeq Ldone ;; false?

;; bool y = true;

iconst_1 ;; true

istore_2 ;; y (local variable)

;; printBool (y = z);

iload_1 ;; z

istore_2 ;; y =

iload_2 ;; y

invokestatic Runtime/printBool(Z)V

;; z = false;

iconst_0 ;; false

istore_1 ;; z =

goto Lstart

;; return y;

Ldone: iload_0

ireturn

.end method
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2. Give the small-step semantics of the JVM instructions you used in the Jasmin code
in part 1 (except for return instructions). Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S ′)

where (P, V, S) is the program counter, variable store, and stack before execution
of instruction i, and (P ′, V ′, S ′) are the respective values after the execution. For
adjusting the program counter, assume that each instruction has size 1. (7p)

SOLUTION: Stack S.v shall mean that the top value on the stack is v, the rest is
S. Jump targets L are used as instruction addresses, and P + 1 is the instruction
address following P .

instruction state before state after
goto L (P, V, S) → (L, V, S)
ifeq L (P, V, S.0) → (L, V, S)
ifeq L (P, V, S.v) → (P + 1, V, S) if v ̸= 0
ifne L (P, V, S.1) → (L, V, S)
ifne L (P, V, S.v) → (P + 1, V, S) if v ̸= 1
iload a (P, V, S) → (P + 1, V, S.V (a))
istore a (P, V, S.v) → (P + 1, V [a := v], S)
iconst i (P, V, S) → (P + 1, V, S.i)
invokestatic m (P, V, S.v1 . . . vn) → (P + 1, V, S.v) where v = m(v1, . . . , vn)

Question 6 (Functional languages):

1. The following grammar describes a tiny simply-typed sub language of Haskell.

x identifier
n ::= 0 | 1 | −1 | 2 | −2 | . . . numeral
e ::= n | e+ e | x | λx → e | e e expression
t ::= Int | t → t type

Application e1 e2 is left-associative, the arrow t1 → t2 is right-associative. Application
binds strongest, then addition, then λ-abstraction.

For the following typing judgements Γ ⊢ e : t, decide whether they are valid or not.
Your answer can be just “valid” or “not valid”, but you may also provide a justification
why some judgement is invalid.

(a) x : Int, f : Int → Int ⊢ (λy → y y) (λz → f z) : Int
(b) y : Int → Int, f : Int ⊢ (λz → y (z + f)) (y 1) : Int
(c) y : Int → Int ⊢ λx → y (y (x+ y x)) : Int → Int
(d) ⊢ λf → (f + f) (λx → x) : Int → Int
(e) k : (Int → Int) → (Int → Int) ⊢ (λg → k g) (λh → h+ 1) : Int

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point
for a wrong answer −1 points. If you choose not to give an answer for a judgement, you
get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative
sum is rounded up to 0. (5p)
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SOLUTION:

(a) not valid (self application)
(b) valid
(c) valid
(d) not valid (f + f is a number, cannot be applied)
(e) not valid (term has type Int → Int, not Int)

2. For each of the following terms, decide whether it evaluates more efficiently (in the
sense of fewer reductions) in call-by-name or call-by-value. Your answer can be just “call-
by-name” or “call-by-value”, but you can also add a justification why you think so. Same
rules for multiple choice as in part 1. (5p)

(a) (λx → x+ x) ((λy → λz → y + y) (1 + 2) (3 + 4 + 5))
(b) (λx → λy → x+ x) (1 + 2 + 3) ((λz → z z)(λz → z z))
(c) (λx → λy → y + y) (λz → (λu → uu)(λu → uu)) (1 + 2)
(d) (λx → λy → x+ x) (1 + 2 + 3) (4 + 5 + 6 + 7)
(e) (λx → λy → x+ x) (1 + 2) (3 + 4 + 5)

SOLUTION:

(a) call-by-value (5 additions vs. 7)
(b) call-by-name (diverges in call-by-value)
(c) call-by-value (2 additions vs. 3)
(d) call-by-name (5 additions vs. 6)
(e) call-by-name (3 additions vs. 4)
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