Programming Language Technology

Exam, 4 April 2024, 8.30-12.30 in SB-L308

Course codes: Chalmers DAT151, GU DIT231.
Exam supervision: Andreas Abel (+46 31772 1731), visits at 9:30 and 11:30.
Grading scale: $\operatorname{Max}=60 \mathrm{p}, \mathrm{VG}=5=48 \mathrm{p}, 4=36 \mathrm{p}, \mathrm{G}=3=24 \mathrm{p}$.
Allowed aid: an English dictionary.
Exam review: Wed 17 April 2024 9.30-10.30 in room EDIT 6128.
Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following kinds of constructs of C:

- Program: int main() followed by a block
- Block: a sequence of statements enclosed between \{ and \}
- Statements:
- blocks
- expression followed by semicolon
- initializing single variable declarations, e.g., int $x=e$;
- loop: while followed by a parenthesized expression and a statement
- Expressions:
- identifiers
- integer literals
- preincrements (++x) and postincrements ($\mathrm{x}++$) of identifiers (x)
- less-than comparison of integer expressions (<)
- boolean conjunction (\&\&)

Comparison is non-associative and binds stronger than the left-associative conjunction.

- Types: int and bool

Lines starting with \# or // are comments. An example program is:

```
#include <stdio.h>
#define printInt(i) printf("%d\n",i)
int main ()
{ int n = 0; int k = 0;
    while (k++ < 10) { int i = 0; while (i++ < k) n++; }
    // printInt(n);
}
```

You can use the standard BNFC categories Integer and Ident and the coercions, comment, terminator and separator pragmas.
(10p)

SOLUTION:

```
Program. Prg ::= "int" "main" "(" ")" Block ;
Block. Block ::= "{" Stms "}" ;
SNil. Stms ::=
SCons. Stms ::= Stm Stms
SBlock. Stm ::= Block ;
SDecl. Stm ::= Type Ident "=" Exp ";" ;
SExp. Stm ::= Exp ";" ;
SWhile. Stm ::= "while" "(" Exp ")" Stm ;
EInt. Exp2 ::= Integer ;
EId. Exp2 ::= Ident
EPreIncr. Exp2 ::= "++" Ident
EPostIncr. Exp2 ::= Ident "++"
ELt. Exp1 ::= Exp2 "<" Exp2
EAnd. Exp ::= Exp "&&" Exp1
coercions Exp 2
TInt. Type ::= "int"
TBool. Type ::= "bool"
comment "#"
comment "//"
```

Question 2 (Lexing): You roll a dice until you get a six three times in a row. Let $L \subseteq$ Σ^{*} be the language of such roll sequences. You can work with the alphabet $\Sigma=\{S, N\}$ where S stands for a six and N for a non-six (one to five).

1. Give a regular expression for language L.
2. Give a non-deterministic finite automation for L.
3. Give a minimal deterministic finite automaton for L.
(6p)

SOLUTION:

1. RE: $\left(S^{?} S^{?} N\right)^{*} S S S$ where $S^{?}=(S \mid \varepsilon)$
2. NFA:

Of course, the following DFA would also be a possible solution for the NFA. (Every DFA is trivially a NFA.)
3. DFA:

Question 3 (LR Parsing): Consider the following labeled BNF-Grammar (written in bnfc syntax). The starting non-terminal is D.

```
D1. D ::= D "|" C ;
D2. D ::= C ;
C1. C ::= C "&" L ;
C2. C ::= L ;
LA. L ::= "A" ;
LB. L ::= "B" ;
LN. L ::= "~" L ;
LP. L ::= "(" D ")" ;
```

Step by step, trace the shift-reduce parsing of the expression

```
~ A & ~ ~ B | A
```

showing how the stack and the input evolves and which actions are performed. (8p)

SOLUTION: The actions are shift, reduce with rule(s), and accept. Stack and input are separated by a dot.

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the expression forms of Question 1. Alternatively, you can write the type checker in pseudo code or Haskell. (E.g., Java is not pseudo code!) In any case, the typing environment must be made explicit. (6p)

SOLUTION: The type checking judgement $\Gamma \vdash e: t$ for expressions is the least relation closed under the following rules.

$$
\begin{gathered}
\overline{\Gamma \vdash \operatorname{EId} x: \Gamma(x)} \\
\overline{\Gamma \vdash \operatorname{EInt} i: \text { int }} \quad \frac{\Gamma(x)=\text { int }}{\Gamma \vdash \operatorname{EPreIncr} x: \text { int }} \quad \frac{\Gamma(x)=\text { int }}{\Gamma \vdash \text { EPostIncr } x: \text { int }} \\
\frac{\Gamma \vdash e_{1}: \text { int }}{\Gamma \vdash \operatorname{ELt} e_{1}} \quad \Gamma \vdash e_{2}: \text { bool int }
\end{gathered} \frac{\Gamma \vdash e_{1}: \text { bool }}{\Gamma \vdash \text { EAnd } e_{1} e_{2}: \text { bool }} \quad .
$$

2. Write syntax-directed interpretation rules for the expressions of Question 1.

Alternatively, you can write the interpreter in pseudo code or Haskell. In any case, the environment must be made explicit. (7p)

SOLUTION: The evaluation judgement $\gamma \vdash e \Downarrow\left\langle v ; \gamma^{\prime}\right\rangle$ for expressions is the least relation closed under the following rules.

$$
\begin{gathered}
\overline{\gamma \vdash \operatorname{EId} x \Downarrow\langle\gamma(x) ; \gamma\rangle} \quad \overline{\gamma \vdash \text { EInt } i \Downarrow\langle i ; \gamma\rangle} \\
\frac{i=\gamma(x)+1}{\gamma \vdash \text { EPreInc } x \Downarrow\langle i ; \gamma[x:=i]\rangle} \quad \overline{\gamma \vdash \text { EPostInc } x \Downarrow\langle i ; \gamma[x:=i+1]\rangle} \\
\frac{\gamma \vdash e_{1} \Downarrow\left\langle i_{1} ; \gamma^{\prime}\right\rangle}{\gamma \vdash \operatorname{ELt} e_{1}} \frac{\gamma^{\prime} \vdash e_{2} \Downarrow\left\langle e_{2}\left\langle i_{2} ; i_{2} ; \gamma^{\prime \prime}\right\rangle\right.}{} \\
\frac{\gamma \vdash e_{1} \Downarrow\left\langle\text { false } ; \gamma^{\prime}\right\rangle}{\gamma \vdash \text { EAnd } e_{1} e_{2} \Downarrow\left\langle\text { false } ; \gamma^{\prime}\right\rangle} \quad \frac{\gamma \vdash e_{1} \Downarrow\left\langle\text { true } ; \gamma^{\prime}\right\rangle \quad \gamma^{\prime} \vdash e_{2} \Downarrow\left\langle b ; \gamma^{\prime \prime}\right\rangle}{\gamma \vdash \text { EAnd } e_{1} e_{2} \Downarrow\left\langle b ; \gamma^{\prime \prime}\right\rangle}
\end{gathered}
$$

Question 5 (Compilation):

1. Statement by statement, translate the function main of the example program of Question 1 to Jasmin. (Do not optimize the program before translation!)
Make clear which instructions come from which statement, and determine the stack and local variable limits. Please remember that JVM methods must end in a return instruction. (7p)

SOLUTION:

```
.method public static main()I
.limit locals 3
.limit stack 2
    ;; int n = 0;
    ldc 0
    istore 0
    ;; int k = 0;
    ldc 0
    istore 1
    ;; while (k++ < 10))
L0:
    iload 1
    iinc 1 1
    ldc 10
    if_icmpge L1
    ;; int i = 0;
    ldc 0
    istore 2
    ;; while (i++ < k))
L2:
    iload 2
    iinc 2 1
    iload 1
    if_icmpge L0
    ;; (int) n ++;
    iinc 0 1
    goto L2
L1:
    ldc 0
    ireturn
.end method
```

2. Give the small-step semantics of the JVM instructions you used in the Jasmin code in part 1 (except for return instructions). Write the semantics in the form

$$
i:(P, V, S) \longrightarrow\left(P^{\prime}, V^{\prime}, S^{\prime}\right)
$$

where (P, V, S) is the program counter, variable store, and stack before execution of instruction i, and $\left(P^{\prime}, V^{\prime}, S^{\prime}\right)$ are the respective values after the execution. For adjusting the program counter, assume that each instruction has size 1. (6 p)

SOLUTION: Stack $S . v$ shall mean that the top value on the stack is v, the rest is S. Jump targets L are used as instruction addresses, and $P+1$ is the instruction address following P.

```
instruction state before state after
goto L (P,V,S) }->(L,V,S
if_icmpge L (P,V,S.v.w) -> (L,V,S) if v\geqw
if_icmpge L (P,V,S.v.w) -> (P+1,V,S) unless v\geqw
iload a (P,V,S) }\quad->(P+1,V,S.V(a)
istore a (P,V,S.v) }->(P+1,V[a:=v],S
ldc i (P,V,S) 
inc ai (P,V,S) }->(P+1,V[a:=V(a)+i],S
```


Question 6 (Functional languages):

1. The following grammar describes a tiny simply-typed sub language of Haskell.

$$
\begin{array}{lll}
x & & \text { identifier } \\
n & :=0|1|-1|2|-2 \mid \ldots & \text { numeral } \\
e & ::=n|e+e| x|\lambda x \rightarrow e| e e & \text { expression } \\
t::=\operatorname{lnt} \mid t \rightarrow t & \text { type }
\end{array}
$$

Application $e_{1} e_{2}$ is left-associative, the arrow $t_{1} \rightarrow t_{2}$ is right-associative. Application binds strongest, then addition, then λ-abstraction.

For the following typing judgements $\Gamma \vdash e: t$, decide whether they are valid or not. Your answer can be just "valid" or "not valid", but you may also provide a justification why some judgement is invalid.
(a) $k:(\operatorname{lnt} \rightarrow \operatorname{Int}) \rightarrow \operatorname{Int} \quad \vdash k(\lambda f \rightarrow f)+1 \quad: \operatorname{Int}$
(b) $x:$ Int \rightarrow Int, $g:$ Int $\quad \vdash x(y+1) \quad$ Int
(c) $f:($ Int \rightarrow Int $) \rightarrow($ Int \rightarrow Int $) \vdash(\lambda i \rightarrow f i)(\lambda y \rightarrow f(\lambda h \rightarrow h) y):$ Int \rightarrow Int
(d) $h: \operatorname{Int} \rightarrow \operatorname{Int} \quad \vdash \lambda y \rightarrow \lambda h \rightarrow(h+1)+y \quad: \operatorname{Int} \rightarrow(\operatorname{lnt} \rightarrow \operatorname{lnt})$
(e) $\quad x: \operatorname{lnt} \rightarrow \operatorname{lnt} \quad \vdash \lambda f \rightarrow f(1+f(f x)) \quad:(\operatorname{lnt} \rightarrow \operatorname{lnt}) \rightarrow \operatorname{lnt}$

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point for a wrong answer -1 points. If you choose not to give an answer for a judgement, you get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative sum is rounded up to 0 . (5 p)

SOLUTION:

(a) valid
(b) not valid (y is not in scope)
(c) valid
(d) valid
(e) not valid ($f x$ is not function, but f expects one)
2. For each of the following terms, decide whether it evaluates more efficiently (in the sense of fewer reductions) in call-by-name or call-by-value. Your answer can be just "call-by-name" or "call-by-value", but you can also add a justification why you think so. Same rules for multiple choice as in part 1. (5p)
(a) $(\lambda x \rightarrow \lambda y \rightarrow y+y)(\lambda u \rightarrow(\lambda z \rightarrow z z)(\lambda z \rightarrow z z))(1+2+3+4)$
(b) $(\lambda x \rightarrow \lambda y \rightarrow x+x)(1+2+3+4)(5+6)$
(c) $(\lambda x \rightarrow x+x)((\lambda y \rightarrow \lambda z \rightarrow z+z)(1+2+3)(4+5+6))$
(d) $(\lambda x \rightarrow \lambda y \rightarrow y+y)((\lambda z \rightarrow z z)(\lambda z \rightarrow z z))(1+2+3)$
(e) $\quad(\lambda x \rightarrow \lambda y \rightarrow x+x)(1+2)(3+4+5+6)$

SOLUTION:

(a) call-by-value (4 additions vs. 7)
(b) call-by-value (5 additions vs. 7)
(c) call-by-value (6 additions vs. 11)
(d) call-by-name (diverges in call-by-value)
(e) call-by-name (3 additions vs. 5)

