
Programming Language Technology

Exam, 11 January 2024, 8.30–12.30 at Johanneberg Campus

Course codes: Chalmers DAT151, GU DIT231.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 9:30 and 11:30.

Grading scale: Max = 60p, MVG = 5 = 48p, VG = 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Thu 18 January 2024 14.30-15.30 in room EDIT 3128.

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
kinds of constructs of C:

• Program: int main() followed by a block
• Block: a sequence of statements enclosed between { and }

• Statement:
– statement formed from an expression by adding a semicolon ;

– initializing variable declarations, e.g., int x = e;

– assignment, e.g., x = e;

– loop: while followed by a parenthesized expression and a block
• Atomic expression:

– identifier
– integer literal
– function call with a single argument
– pre-increment of identifier, e.g., ++x
– parenthesized expression

• Expression (from highest to lowest precedence):
– atomic expression
– addition (+), left-assocative
– less-than comparison of integer expressions (<), non-associative

• Type: int or bool
Lines starting with # are comments. An example program is:

#include <stdio.h>

#define printInt(i) printf("%d\n",i)

int main ()

{ int n = 42; int i = 0; int k = 0;

while (k < 101) { n = k; k = n + ++i; }

printInt(n);

}

You can use the standard BNFC categories Integer and Ident and the coercions

pragma. Do not use list categories via the terminator and separator pragmas!
(10p)

1

SOLUTION:

Program. Prg ::= "int" "main" "(" ")" Block ;

SBlock. Block ::= "{" Stms "}" ;

SNil. Stms ::= ;

SCons. Stms ::= Stm Stms ;

SDecl. Stm ::= Type Ident "=" Exp ";" ;

SAssign. Stm ::= Ident "=" Exp ";" ;

SExp. Stm ::= Exp ";" ;

SWhile. Stm ::= "while" "(" Exp ")" Block ;

EInt. Exp2 ::= Integer ;

EId. Exp2 ::= Ident ;

EPreIncr. Exp2 ::= "++" Ident ;

ECall. Exp2 ::= Ident "(" Exp ")" ;

EPlus. Exp1 ::= Exp1 "+" Exp2 ;

ELt. Exp ::= Exp1 "<" Exp1 ;

TInt. Type ::= "int" ;

TBool. Type ::= "bool" ;

coercions Exp 2 ;

comment "#" ;

2

Question 2 (Lexing): An non-nested C block comment starts with /* and ends with
*/ and can have any characters in between (but not the comment-end sequence */ of
course). Also, /*/ is not a valid comment.

1. Give a deterministic finite automaton for such comments with no more than 8
states. Remember to mark initial and final states appropriately.

2. Give a regular expression for such comments.

Work in the alphabet {S,A, c} distinguishing 3 tokens: S for ’/’, A for ’*’, and c where
c stands for any other character. (6p)

SOLUTION:

1. DFA:

// • S // • A // •
A

++

c,S

��
• S //

A

��

c

kk ·

2. RE: E.g. SA
(
A∗c | S

)∗
AA∗S

3

Question 3 (LR Parsing): Consider the following labeled BNF-Grammar (written in
bnfc syntax). The starting non-terminal is S.

Start. S ::= M P ;

MEmp. M ::= ;

MBin. M ::= M A "*" ;

PEmp. P ::= ;

PBin. P ::= A "+" P ;

X. A ::= "x" ;

Y. A ::= "y" ;

Step by step, trace the shift-reduce parsing of the expression

x * y * y + x +

showing how the stack and the input evolves and which actions are performed. (8p)

SOLUTION: The actions are shift, reduce with rule(s), and accept. Stack and
input are separated by a dot.

. x * y * y + x + -- reduce with rule MEmp

M . x * y * y + x + -- shift

M x . * y * y + x + -- reduce with rule X

M A . * y * y + x + -- shift

M A * . y * y + x + -- reduce with rule MBin

M . y * y + x + -- shift

M y . * y + x + -- reduce with rule Y

M A . * y + x + -- shift

M A * . y + x + -- reduce with rule MBin

M . y + x + -- shift

M y . + x + -- reduce with rule Y

M A . + x + -- shift

M A + . x + -- shift

M A + x . + -- reduce with rule X

M A + A . + -- shift

M A + A + . -- reduce with rule PEmp

M A + A + P . -- reduce with rule PBin

M A + P . -- reduce with rule PBin

M P . -- reduce with rule Start

S . -- accept

4

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and blocks of
Question 1. Observe the scoping rules for variables! You can assume a type-
checking judgement for expressions.

Alternatively, you can write the type checker in pseudo code or Haskell. In any
case, the typing environment must be made explicit. (8p)(7p)

SOLUTION: We use a judgement Γ ⊢ s ⇒ Γ′ that expresses that statement
s is well-formed in context Γ and might introduce new declarations, resulting in
context Γ′. Judgement Γ ⊢ b states that block b is well-formed in Γ.

A context Γ is a stack of blocks ∆, separated by a dot. Each block ∆ is a map
from variables x to types t. We write ∆, x:t for adding the binding x 7→ t to the
map. Duplicate declarations of the same variable in the same block are forbidden;
with x ̸∈ ∆ we express that x is not bound in block ∆. We refer to a judgement
Γ ⊢ e : t, which reads “in context Γ, expression e has type t”.

Γ.∆ ⊢ e : t

Γ.∆ ⊢ SInit t x e ⇒ (Γ.∆, x:t)
x ̸∈ ∆

Γ ⊢ e : Γ(x)

Γ ⊢ SAssignx e ⇒ Γ

Γ ⊢ e : t

Γ ⊢ SExp e ⇒ Γ

Γ ⊢ e : bool Γ ⊢ b

Γ ⊢ SWhile e b ⇒ Γ

Γ. ⊢ ss ⇒ Γ.∆

Γ ⊢ SBlock ss

This judgement for statements is extended to sequences of statements Γ ⊢ ss ⇒ Γ′

by the following rules:

Γ ⊢ SNil ⇒ Γ

Γ ⊢ s ⇒ Γ′ Γ′ ⊢ ss ⇒ Γ′′

Γ ⊢ SCons s ss ⇒ Γ′′

2. Write syntax-directed interpretation rules for the expressions of Question 1. You
can leave out function calls.

Alternatively, you can write the interpreter in pseudo code or Haskell. A function
lookupVar can be assumed if its behavior is described. In any case, the environment
must be made explicit. (6p)(5p)

SOLUTION: The evaluation judgement γ ⊢ e ⇓ ⟨v; γ′⟩ for expressions is the
least relation closed under the following rules.

γ ⊢ EId x ⇓ ⟨γ(x); γ⟩ γ ⊢ EInt i ⇓ ⟨i; γ⟩
i = γ(x) + 1

γ ⊢ EPreIncr x ⇓ ⟨i; γ[x := i]⟩

γ ⊢ e1 ⇓ ⟨i1; γ′⟩ γ′ ⊢ e2 ⇓ ⟨i2; γ′′⟩
γ ⊢ EAdd e1 e2 ⇓ ⟨i1+i2; γ′′⟩

γ ⊢ e1 ⇓ ⟨i1; γ′⟩ γ′ ⊢ e2 ⇓ ⟨i2; γ′′⟩
γ ⊢ ELt e1 e2 ⇓ ⟨i1<i2; γ′′⟩

5

Question 5 (Compilation):

1. Statement by statement, translate the function main of the example program of
Question 1 to Jasmin. (Do not optimize the program before translation!)

To translate the call to printInt, assume a Java class Runtime with a method void

printInt(int).

Make clear which instructions come from which statement, and determine the stack
and local variable limits. Please remember that JVM methods must end in a return
instruction. (7p)

SOLUTION:

.method public static main()I

.limit locals 3

.limit stack 2

;; int n = 42;

ldc 42

istore 0 ;; n

;; int i = 0;

ldc 0

istore 1 ;; i

;; int k = 0;

ldc 0

istore 2 ;; k

;; while (k < 101)

L0: iload 2 ;; k

ldc 101

if_icmpge L1

;; n = k;

iload 2 ;; k

istore 0 ;; n

;; k = n + ++ i;

iload 0 ;; n

iinc 1 1 ;; i

iload 1 ;; i

iadd

istore 2 ;; k

goto L0

;; printInt (n);

L1: iload 0 ;; n

6

invokestatic Runtime/printInt(I)V

;; return 0; // mandatory return from main added by compiler

ldc 0

ireturn

.end method

2. Give the small-step semantics of the JVM instructions you used in the Jasmin code
in part 1 (except for return instructions). Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S ′)

where (P, V, S) is the program counter, variable store, and stack before execution
of instruction i, and (P ′, V ′, S ′) are the respective values after the execution. For
adjusting the program counter, assume that each instruction has size 1. (7p)

SOLUTION: Stack S.v shall mean that the top value on the stack is v, the rest is
S. Jump targets L are used as instruction addresses, and P + 1 is the instruction
address following P .

instruction state before state after
goto L (P, V, S) → (L, V, S)
if icmpge L (P, V, S.v.w) → (L, V, S) if v ≥ w
if icmpge L (P, V, S.v.w) → (P + 1, V, S) unless v ≥ w
iload a (P, V, S) → (P + 1, V, S.V (a))
istore a (P, V, S.v) → (P + 1, V [a := v], S)
ldc i (P, V, S) → (P + 1, V, S.i)
inc a i (P, V, S) → (P + 1, V [a := V (a) + i], S)
iadd (P, V, S.v.w) → (P + 1, V, S.(v + w))
invokestatic m (P, V, S.v1 . . . vn) → (P + 1, V, S.v) where v = m(v1, . . . , vn)

Question 6 (Functional languages):

1. The following grammar describes a tiny simply-typed sub language of Haskell.

x identifier
n ::= 0 | 1 | −1 | 2 | −2 | . . . numeral
e ::= n | e+ e | x | λx → e | e e expression
t ::= Int | t → t type

Application e1 e2 is left-associative, the arrow t1 → t2 is right-associative. Application
binds strongest, then addition, then λ-abstraction.

For the following typing judgements Γ ⊢ e : t, decide whether they are valid or not.
Your answer can be just “valid” or “not valid”, but you may also provide a justification

7

why some judgement is invalid.

(a) x : Int → Int, g : Int ⊢ x (y + 1) : Int
(b) h : Int → Int ⊢ λy → λh → (h+ 1) + y : Int → (Int → Int)
(c) k : (Int → Int) → Int ⊢ k (λf → f) + 1 : Int
(d) x : Int → Int ⊢ λf → f (1 + f (f x)) : (Int → Int) → Int
(e) f : (Int → Int) → (Int → Int) ⊢ (λi → f i) (λy → f (λh → h) y) : Int → Int

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point
for a wrong answer −1 points. If you choose not to give an answer for a judgement, you
get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative
sum is rounded up to 0. (5p)

SOLUTION:

(a) not valid (y is not in scope)
(b) valid
(c) valid
(d) not valid (f x is not function, but f expects one)
(e) valid

2. For each of the following terms, decide whether it evaluates more efficiently (in the
sense of fewer reductions) in call-by-name or call-by-value. Your answer can be just “call-
by-name” or “call-by-value”, but you can also add a justification why you think so. Same
rules for multiple choice as in part 1. (5p)

(a) (λx → λy → x+ x) (1 + 2) (3 + 4 + 5 + 6)
(b) (λx → λy → x+ x) (1 + 2 + 3 + 4) (5 + 6)
(c) (λx → λy → y + y) ((λz → z z)(λz → z z)) (1 + 2 + 3)
(d) (λx → λy → y + y) (λu → (λz → z z)(λz → z z)) (1 + 2 + 3 + 4)
(e) (λx → x+ x) ((λy → λz → z + z) (1 + 2 + 3) (4 + 5 + 6))

SOLUTION:

(a) call-by-name (3 additions vs. 5)
(b) call-by-value (5 additions vs. 7)
(c) call-by-name (diverges in call-by-value)
(d) call-by-value (4 additions vs. 7)
(e) call-by-value (6 additions vs. 11)

8

