Programming Language Technology

Exam, 11 January 2024, 8.30-12.30 at Johanneberg Campus

Course codes: Chalmers DAT151, GU DIT231.
Exam supervision: Andreas Abel (+46 31772 1731), visits at 9:30 and 11:30.
Grading scale: $\mathrm{Max}=60 \mathrm{p}, \mathrm{MVG}=5=48 \mathrm{p}, \mathrm{VG}=4=36 \mathrm{p}, \mathrm{G}=3=24 \mathrm{p}$.
Allowed aid: an English dictionary.
Exam review: Thu 18 January 2024 14.30-15.30 in room EDIT 3128.
Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following kinds of constructs of C :

- Program: int main() followed by a block
- Block: a sequence of statements enclosed between \{ and \}
- Statement:
- statement formed from an expression by adding a semicolon ;
- initializing variable declarations, e.g., int $\mathrm{x}=\mathrm{e}$;
- assignment, e.g., x = e;
- loop: while followed by a parenthesized expression and a block
- Atomic expression:
- identifier
- integer literal
- function call with a single argument
- pre-increment of identifier, e.g., ++x
- parenthesized expression
- Expression (from highest to lowest precedence):
- atomic expression
- addition (+), left-assocative
- less-than comparison of integer expressions (<), non-associative
- Type: int or bool

Lines starting with \# are comments. An example program is:

```
#include <stdio.h>
#define printInt(i) printf("%d\n",i)
int main ()
{ int n = 42; int i = 0; int k = 0;
    while (k < 101) { n = k; k = n + ++i; }
    printInt(n);
}
```

You can use the standard BNFC categories Integer and Ident and the coercions pragma. Do not use list categories via the terminator and separator pragmas! (10p)

SOLUTION:

```
Program. Prg ::= "int" "main" "(" ")" Block ;
SBlock. Block ::= "{" Stms "}" ;
SNil. Stms ::=
SCons. Stms ::= Stm Stms ;
SDecl. Stm ::= Type Ident "=" Exp ";" ;
SAssign. Stm ::= Ident "=" Exp ";" ;
SExp. Stm ::= Exp ";" ;
SWhile. Stm ::= "while" "(" Exp ")" Block ;
EInt. Exp2 ::= Integer ;
EId. Exp2 ::= Ident
EPreIncr. Exp2 ::= "++" Ident
ECall. Exp2 ::= Ident "(" Exp ")"
EPlus. Exp1 ::= Exp1 "+" Exp2
ELt. Exp ::= Exp1 "<" Exp1 ;
TInt. Type ::= "int"
TBool. Type ::= "bool"
coercions Exp 2
comment "#"
```

Question 2 (Lexing): An non-nested C block comment starts with /* and ends with */ and can have any characters in between (but not the comment-end sequence $*$ / of course). Also, /*/ is not a valid comment.

1. Give a deterministic finite automaton for such comments with no more than 8 states. Remember to mark initial and final states appropriately.
2. Give a regular expression for such comments.

Work in the alphabet $\{S, A, c\}$ distinguishing 3 tokens: S for '/', A for '*', and c where c stands for any other character. (6p)

SOLUTION:

1. DFA:

2. RE: E.g. $S A\left(A^{*} c \mid S\right)^{*} A A^{*} S$

Question 3 (LR Parsing): Consider the following labeled BNF-Grammar (written in bnfc syntax). The starting non-terminal is S .

Start. S ::= M P ;

PEmp. P ::= ;
PBin. P ::= A "+" P ;
X. A ::= "x" ;
Y. A ::= "y" ;

Step by step, trace the shift-reduce parsing of the expression

$$
\mathrm{x} * \mathrm{y} * \mathrm{y}+\mathrm{x}+
$$

showing how the stack and the input evolves and which actions are performed. (8p)

SOLUTION: The actions are shift, reduce with rule(s), and accept. Stack and input are separated by a dot.

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and blocks of Question 1. Observe the scoping rules for variables! You can assume a typechecking judgement for expressions.
Alternatively, you can write the type checker in pseudo code or Haskell. In any case, the typing environment must be made explicit. (8p)(7p)

SOLUTION: We use a judgement $\Gamma \vdash s \Rightarrow \Gamma^{\prime}$ that expresses that statement s is well-formed in context Γ and might introduce new declarations, resulting in context Γ^{\prime}. Judgement $\Gamma \vdash b$ states that block b is well-formed in Γ.
A context Γ is a stack of blocks Δ, separated by a dot. Each block Δ is a map from variables x to types t. We write $\Delta, x: t$ for adding the binding $x \mapsto t$ to the map. Duplicate declarations of the same variable in the same block are forbidden; with $x \notin \Delta$ we express that x is not bound in block Δ. We refer to a judgement $\Gamma \vdash e: t$, which reads "in context Γ, expression e has type t ".

$$
\begin{gathered}
\frac{\Gamma . \Delta \vdash e: t}{\Gamma . \Delta \vdash \operatorname{SInit} t x e \Rightarrow(\Gamma . \Delta, x: t)} x \notin \Delta \quad \frac{\Gamma \vdash e: \Gamma(x)}{\Gamma \vdash \operatorname{SAssign} x e \Rightarrow \Gamma} \\
\frac{\Gamma \vdash e: t}{\Gamma \vdash \operatorname{SExp} e \Rightarrow \Gamma} \quad \frac{\Gamma \vdash e: \text { bool }}{\Gamma \vdash \text { SWhile } e b \Rightarrow \Gamma} \quad \frac{\Gamma \vdash b}{\Gamma \vdash \text { SBlock } s s}
\end{gathered}
$$

This judgement for statements is extended to sequences of statements $\Gamma \vdash s s \Rightarrow \Gamma^{\prime}$ by the following rules:

$$
\overline{\Gamma \vdash \text { SNil } \Rightarrow \Gamma} \quad \frac{\Gamma \vdash s \Rightarrow \Gamma^{\prime} \quad \Gamma^{\prime} \vdash s s \Rightarrow \Gamma^{\prime \prime}}{\Gamma \vdash \text { SCons } s s \Rightarrow \Gamma^{\prime \prime}}
$$

2. Write syntax-directed interpretation rules for the expressions of Question 1. You can leave out function calls.

Alternatively, you can write the interpreter in pseudo code or Haskell. A function lookupVar can be assumed if its behavior is described. In any case, the environment must be made explicit. (6 p)(5 p)

SOLUTION: The evaluation judgement $\gamma \vdash e \Downarrow\left\langle v ; \gamma^{\prime}\right\rangle$ for expressions is the least relation closed under the following rules.

$$
\begin{aligned}
& \overline{\gamma \vdash \operatorname{EId} x \Downarrow\langle\gamma(x) ; \gamma\rangle} \quad \overline{\gamma \vdash \text { EInt } i \Downarrow\langle i ; \gamma\rangle} \quad \overline{\gamma \vdash \text { EPreIncr } x \Downarrow\langle i ; \gamma[x:=i]\rangle} \\
& \frac{\gamma \vdash e_{1} \Downarrow\left\langle i_{1} ; \gamma^{\prime}\right\rangle}{\gamma \vdash \operatorname{EAdd} e_{1} e_{2} \Downarrow\left\langle i_{1}+i_{2} ; \gamma^{\prime \prime}\right\rangle} \quad \gamma^{\prime} \vdash e_{2} \Downarrow\left\langle i^{\prime \prime}\right\rangle \\
& \gamma \vdash e_{1} \Downarrow\left\langle i_{1} ; \gamma^{\prime}\right\rangle \quad \gamma^{\prime} \vdash e_{2} \Downarrow\left\langle i_{2} ; \gamma^{\prime \prime}\right\rangle \\
& \gamma \vdash \operatorname{ELt} e_{1} e_{2} \Downarrow\left\langle i_{1}<i_{2} ; \gamma^{\prime \prime}\right\rangle
\end{aligned}
$$

Question 5 (Compilation):

1. Statement by statement, translate the function main of the example program of Question 1 to Jasmin. (Do not optimize the program before translation!)
To translate the call to printInt, assume a Java class Runtime with a method void printInt(int).
Make clear which instructions come from which statement, and determine the stack and local variable limits. Please remember that JVM methods must end in a return instruction. (7p)

SOLUTION:

```
.method public static main()I
.limit locals 3
.limit stack 2
    ;; int n = 42;
    ldc 42
    istore 0 ;; n
    ;; int i = 0;
    ldc 0
    istore 1 ;; i
    ;; int k = 0;
    ldc 0
    istore 2 ;; k
    ;; while (k < 101)
LO: iload 2 ;; k
    ldc 101
    if_icmpge L1
    ;; n = k;
    iload 2 ;; k
    istore 0 ;; n
    ;; k = n + ++ i;
    iload 0 ;; n
    iinc 1 1 ;; i
    iload 1 ;; i
    iadd
    istore 2 ;; k
    goto LO
    ;; printInt (n);
L1: iload 0 ;; n
```

```
        invokestatic Runtime/printInt(I)V
        ;; return 0; // mandatory return from main added by compiler
        ldc 0
        ireturn
.end method
```

2. Give the small-step semantics of the JVM instructions you used in the Jasmin code in part 1 (except for return instructions). Write the semantics in the form

$$
i:(P, V, S) \longrightarrow\left(P^{\prime}, V^{\prime}, S^{\prime}\right)
$$

where (P, V, S) is the program counter, variable store, and stack before execution of instruction i, and $\left(P^{\prime}, V^{\prime}, S^{\prime}\right)$ are the respective values after the execution. For adjusting the program counter, assume that each instruction has size 1. (7p)

SOLUTION: Stack $S . v$ shall mean that the top value on the stack is v, the rest is S. Jump targets L are used as instruction addresses, and $P+1$ is the instruction address following P.

instruction	state before		state after
goto L	(P, V, S)	$\rightarrow(L, V, S) \quad$ (
if_icmpge L	$(P, V, S . v . w)$	$\rightarrow(L, V, S) \quad$ if $v \geq w$	
if_icmpge L	$(P, V, S . v . w)$	$\rightarrow(P+1, V, S) \quad$ unless $v \geq w$	
iload a	(P, V, S)	$\rightarrow(P+1, V, S . V(a))$	
istore a	$(P, V, S . v)$	$\rightarrow(P+1, V[a:=v], S)$	
ldc i	(P, V, S)	$\rightarrow(P+1, V, S . i)$	
inc $a i$	(P, V, S)	$\rightarrow(P+1, V[a:=V(a)+i], S)$	
iadd	$(P, V, S . v . w)$	$\rightarrow(P+1, V, S .(v+w))$	
invokestatic m	$\left(P, V, S . v_{1} \ldots v_{n}\right)$	$\rightarrow(P+1, V, S . v)$ where $v=m\left(v_{1}, \ldots, v_{n}\right)$	

Question 6 (Functional languages):

1. The following grammar describes a tiny simply-typed sub language of Haskell.

$$
\begin{array}{lll}
x & & \text { identifier } \\
n & :=0|1|-1|2|-2 \mid \ldots & \text { numeral } \\
e & ::=n|e+e| x|\lambda x \rightarrow e| e e & \text { expression } \\
t::=\operatorname{lnt} \mid t \rightarrow t & \text { type }
\end{array}
$$

Application $e_{1} e_{2}$ is left-associative, the arrow $t_{1} \rightarrow t_{2}$ is right-associative. Application binds strongest, then addition, then λ-abstraction.

For the following typing judgements $\Gamma \vdash e: t$, decide whether they are valid or not. Your answer can be just "valid" or "not valid", but you may also provide a justification
why some judgement is invalid.

(a)	$x: \operatorname{lnt} \rightarrow$ Int, $g: \operatorname{lnt}$	$\vdash x(y+1)$	Int
(b)	$h: \operatorname{lnt} \rightarrow$ Int	$\vdash \lambda y \rightarrow \lambda h \rightarrow(h+1)+y$	$: \operatorname{lnt} \rightarrow(\operatorname{lnt} \rightarrow \operatorname{lnt})$
(c)	$k:(\operatorname{lnt} \rightarrow \operatorname{lnt}) \rightarrow \mathrm{Int}$	$\vdash k(\lambda f \rightarrow f)+1$: Int
(d)	$x: \operatorname{lnt} \rightarrow$ Int	$\vdash \lambda f \rightarrow f(1+f(f x))$	$(\mathrm{Int} \rightarrow \mathrm{Int}) \rightarrow \mathrm{Int}$
(e)	$f:($ lnt \rightarrow Int $) \rightarrow$ ($(\lambda i \rightarrow f i)(\lambda y \rightarrow f(\lambda h$	Int \rightarrow Int

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point for a wrong answer -1 points. If you choose not to give an answer for a judgement, you get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative sum is rounded up to 0 . (5p)

SOLUTION:

(a) not valid (y is not in scope)
(b) valid
(c) valid
(d) not valid ($f x$ is not function, but f expects one)
(e) valid
2. For each of the following terms, decide whether it evaluates more efficiently (in the sense of fewer reductions) in call-by-name or call-by-value. Your answer can be just "call-by-name" or "call-by-value", but you can also add a justification why you think so. Same rules for multiple choice as in part 1. (5p)
(a) $(\lambda x \rightarrow \lambda y \rightarrow x+x)(1+2)(3+4+5+6)$
(b) $(\lambda x \rightarrow \lambda y \rightarrow x+x)(1+2+3+4)(5+6)$
(c) $(\lambda x \rightarrow \lambda y \rightarrow y+y)((\lambda z \rightarrow z z)(\lambda z \rightarrow z z))(1+2+3)$
(d) $(\lambda x \rightarrow \lambda y \rightarrow y+y)(\lambda u \rightarrow(\lambda z \rightarrow z z)(\lambda z \rightarrow z z))(1+2+3+4)$
(e) $\quad(\lambda x \rightarrow x+x)((\lambda y \rightarrow \lambda z \rightarrow z+z)(1+2+3)(4+5+6))$

SOLUTION:

(a) call-by-name (3 additions vs. 5)
(b) call-by-value (5 additions vs. 7)
(c) call-by-name (diverges in call-by-value)
(d) call-by-value (4 additions vs. 7)
(e) call-by-value (6 additions vs. 11)

