Programming Language Technology

Exam, 11 January 2024, 8.30-12.30 at Johanneberg Campus

Course codes: Chalmers DAT151, GU DIT231.
Exam supervision: Andreas Abel (446 31 772 1731), visits at 9:30 and 11:30.

Grading scale: Max = 60p, MVG = 5 = 48p, VG = 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Thu 18 January 2024 14.30-15.30 in room EDIT 3128.

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
kinds of constructs of C:
e Program: int main() followed by a block
e Block: a sequence of statements enclosed between { and }
e Statement:
— statement formed from an expression by adding a semicolon ;
— initializing variable declarations, e.g., int x = e;
— assignment, e.g., x = e;
— loop: while followed by a parenthesized expression and a block
e Atomic expression:
— identifier
— integer literal
— function call with a single argument
— pre-increment of identifier, e.g., ++x
— parenthesized expression
e Expression (from highest to lowest precedence):
— atomic expression
— addition (+), left-assocative
— less-than comparison of integer expressions (<), non-associative
e Type: int or bool
Lines starting with # are comments. An example program is:

#include <stdio.h>

#define printInt(i) printf("%d\n",i)

int main ()

{ int n =42; int i = 0; int k = 0;
while (k < 101) { n=k; k=n + ++i; }
printInt(n);

}

You can use the standard BNFC categories Integer and Ident and the coercions
pragma. Do not use list categories via the terminator and separator pragmas!

(10p)

Question 2 (Lexing): An non-nested C block comment starts with /* and ends with
*/ and can have any characters in between (but not the comment-end sequence */ of
course). Also, /*/ is not a valid comment.

1. Give a deterministic finite automaton for such comments with no more than 8
states. Remember to mark initial and final states appropriately.

2. Give a regular expression for such comments.
Work in the alphabet {S, A, ¢} distinguishing 3 tokens: S for >/, A for >+’ and ¢ where
c stands for any other character. (6p)

SOLUTION:

1. DFA:

2. RE: E.g. SA(A*c| S)"AA*S

Question 3 (LR Parsing): Consider the following labeled BNF-Grammar (written in
bnfc syntax). The starting non-terminal is S.

Start. S ::=MP ;
MEmp. M ::= ;
MBin. M ::= M A "x"

PEmp. P ::= ;
PBin. P ::= A "+" P ;
X. A = "x" ;
Y. A = "y" ;

Step by step, trace the shift-reduce parsing of the expression
x*y*y+x+

showing how the stack and the input evolves and which actions are performed. (8p)

SOLUTION: The actions are shift, reduce with rule(s), and accept. Stack and
input are separated by a dot.

X + —-- reduce with rule MEmp
x + —— shift
+ —— reduce with rule X
+ -— shift

—-— reduce with rule MBin

-— shift

—— reduce with rule Y

-— shift

—— reduce with rule MBin

-— shift

-— reduce with rule Y

-— shift

-— shift

—-— reduce with rule X

—-— shift

-- reduce with rule PEmp
P . —— reduce with rule PBin
—— reduce with rule PBin
—— reduce with rule Start
-— accept

=
+oF R K+ <
+ o+ KX+ o+

= <

=
*
+ + X XN + < < ¥ *

T E A Y
T T S S R R A I T ™
R R A

+ o+ + + + o+
U= = K
+ +

N EEREEEEEEEE R R EEER R R
o EEEEE S

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and blocks of
Question 1. Observe the scoping rules for variables! You can assume a type-
checking judgement for expressions.

Alternatively, you can write the type checker in pseudo code or Haskell. In any
case, the typing environment must be made explicit. {8p}(7p)

SOLUTION: We use a judgement I' - s = I that expresses that statement
s is well-formed in context I' and might introduce new declarations, resulting in
context [V, Judgement I' - b states that block b is well-formed in T

A context I' is a stack of blocks A, separated by a dot. Each block A is a map
from variables = to types t. We write A, x:t for adding the binding x +— t to the
map. Duplicate declarations of the same variable in the same block are forbidden;
with z &€ A we express that z is not bound in block A. We refer to a judgement
I' - e : t, which reads “in context I', expression e has type t”.

FAlre:t A 'Fe:T(z)
x
I'AF SInittze = (IA, x:t) ' SAssignze =T
F'Fe:t ['-e:bool o M kss=T.A
I'-SExpe =T I' - SWwhileeb =T I' - SBlock ss

This judgement for statements is extended to sequences of statements I' - ss = I
by the following rules:

'ks=T1" IV ss =T
I'ESNil =T I' - SCons s ss = I

2. Write syntax-directed interpretation rules for the expressions of Question 1. You
can leave out function calls.

Alternatively, you can write the interpreter in pseudo code or Haskell. A function
lookupVar can be assumed if its behavior is described. In any case, the environment
must be made explicit. {6p}(5p)

SOLUTION: The evaluation judgement v F e |} (v;7/) for expressions is the
least relation closed under the following rules.

i=7v(x)+1
v FEId z § {(y(z);7) v EInt i | (i;7) v b EPrelncr z | (i;v[x :=i])

yhe 4 () v Fead (ia;0") yhe 4 (i) Y Fead (ia;7")
v+ EAdd e; ey 4 (iy+i2; ") v ELt e; ez 4 (i1<iq; ")

Question 5 (Compilation):

1. Statement by statement, translate the function main of the example program of
Question 1 to Jasmin. (Do not optimize the program before translation!)

To translate the call to printInt, assume a Java class Runtime with a method void
printInt(int).
Make clear which instructions come from which statement, and determine the stack
and local variable limits. Please remember that JVM methods must end in a return
instruction. (7p)

invokestatic Runtime/printInt(I)V

;; return O; // mandatory return from main added by compiler
ldc 0
ireturn

.end method

2. Give the small-step semantics of the JVM instructions you used in the Jasmin code
in part 1 (except for return instructions). Write the semantics in the form

i (PV,S) — (P V' S

where (P, V,S) is the program counter, variable store, and stack before execution
of instruction ¢, and (P’,V’,S’) are the respective values after the execution. For
adjusting the program counter, assume that each instruction has size 1. (7p)

SOLUTION: Stack S.v shall mean that the top value on the stack is v, the rest is
S. Jump targets L are used as instruction addresses, and P + 1 is the instruction
address following P.

instruction state before state after

goto L (P,V,S) - (L,V,S)

if icmpge L (P, V,Sv.w) - (L,V,9) ifv>w

if _icmpge L (P,V,Svw) - (P+1,V,9) unless v > w
iload a (P,V,95) — (P+1,V,5V(a))

istore a (P,V,Sw) — (P+1,V]a:=v],S)

ldc i (P,V,S) — (P+1,V,54)

inc a i (P,V,S) — (P+1,Via:=V(a)+i],S)

iadd (P,V,Sw.w) — (P+1,V,S.(v+w))

invokestatic m (P, V,Sw;...v,) — (P +1,V,Sw) where v =m(vy,...,v,)

Question 6 (Functional languages):

1. The following grammar describes a tiny simply-typed sub language of Haskell.

x identifier
n o= 0]1|-1]2]-2]... numeral
e = nlete|lx|Ar—elee expression
t == Int|t—t type

Application ey es is left-associative, the arrow t; — t, is right-associative. Application
binds strongest, then addition, then A-abstraction.

For the following typing judgements I' - e : ¢, decide whether they are valid or not.
Your answer can be just “valid” or “not valid”, but you may also provide a justification

7

why some judgement is invalid.

(a) x:Int—Int, g:Int Fa(y+1) : Int

(b) h:lInt— Int FAy—= A —(h+1)+vy : Int — (Int — Int)
(¢) k:(Int — Int) — Int FEOAf—= f)+1 : Int

(d) z:Int— Int FAf—= A+ f(fz)) : (Int — Int) — Int
(e) f:(Int—Int) = (Int = Int) - (N — fi)(Ay — f (A — h)y) : Int — Int

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point
for a wrong answer —1 points. If you choose not to give an answer for a judgement, you
get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative
sum is rounded up to 0. (5p)

SOLUTION:

2. For each of the following terms, decide whether it evaluates more efficiently (in the
sense of fewer reductions) in call-by-name or call-by-value. Your answer can be just “call-
by-name” or “call-by-value”, but you can also add a justification why you think so. Same
rules for multiple choice as in part 1. (5p)

(a) M=y —x+z) (1+2) (3+4+5+6)

(b) M=y —zx+z) (1+2+3+4) (5+6)

(c) Me—=Xy—=y+y) (Az—=z22)(A\z—z22)) (1+2+3)

(d) A= y—=y+y Au— Az—z2)(Az2—22) (1+2+3+4)

(e) M—=z+z)(MW—=>A2—2+2) (1+2+3)(4+5+6))
SOLUTION:

(a) call-by-name (3 additions vs. 5)

(b) call-by-value (5 additions vs. 7)

(c (

(d) call-by-value (4 additions vs. 7)

)
)
) call-by-name (diverges in call-by-value)
) (

) call-by-value (6 additions vs. 11)

