
Programming Language Technology

Exam, 12 April 2022 at 08.30 – 12.30 in M

Course codes: Chalmers DAT151, GU DIT231.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 09:30 and 11:30.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: 28 April 2022 13.30-14.30 in EDIT meeting room 6128 (6th floor).

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
kinds of constructs of C/C++ (sublanguage of lab 2):

• Program: a sequence of function definitions.
• Function definition: type, identifier, comma-separated parameter list in parenthe-

ses, block.
• Parameter: type followed by identifier, e.g. int x.
• Block: a sequence of statements enclosed between { and }
• Statements:

– block
– initializing variable declaration, e.g., int x = 5;
– return statement
– if-else statement

• Expressions, from highest to lowest precedence:
– parenthesized expression, identifier, integer literal
– addition (+), left associative
– less-than comparison (<), non-associative
– short-circuiting conjunction (&&), left associative

• Type: int or bool
You can use the standard BNFC categories Integer and Ident and the list pragmas
terminator and separator, but not the coercions pragma. An example program is:

int f (int x, bool b) {

int z = x + x;

if (b && z < 10) {

int x = z + z;

return x;

} else return 0;

}

(10p)

1

SOLUTION:

Program. Prg ::= [Def] ;

DFun. Def ::= Type Ident "(" [Arg] ")" "{" [Stm] "}" ;

terminator Def "" ;

ADecl. Arg ::= Type Ident ;

separator Arg "," ;

SBlock. Stm ::= "{" [Stm] "}" ;

SInit. Stm ::= Type Ident "=" Exp ";" ;

SReturn. Stm ::= "return" Exp ";" ;

SIfElse. Stm ::= "if" "(" Exp ")" Stm "else" Stm ;

terminator Stm "" ;

EId. Exp3 ::= Ident ;

EInt. Exp3 ::= Integer ;

EPlus. Exp2 ::= Exp2 "+" Exp3 ;

ELt. Exp1 ::= Exp2 "<" Exp2 ;

EAnd. Exp ::= Exp "&&" Exp1 ;

_. Exp3 ::= "(" Exp ")" ;

_. Exp2 ::= Exp3 ;

_. Exp1 ::= Exp2 ;

_. Exp ::= Exp1 ;

TInt. Type ::= "int" ;

TBool. Type ::= "bool" ;

2

Question 2 (Lexing): An non-nested Haskell comment starts with {- and ends with
-} and can have any characters in between (but not the comment-end sequence -} of
course). Also, {-} is not a valid comment.

1. Give a deterministic finite automaton for such comments with no more than 8
states. Remember to mark initial and final states appropriately.

2. Give a regular expression for such comments.

Work in the alphabet distinguishing 4 tokens: {, }, -, and c where c stands for any other
character. (6p)

SOLUTION:

1. DFA:

// •
{

// • - // •
-

**

c{}
��

•
}

//

-

��

c{
jj ·

2. RE (solution corrected 2023-01-05): {-
(
c | { | }

)∗
-+

((
c | {

)(
c | { | }

)∗
-+

)∗
}

Question 3 (LR Parsing): Use your grammar from Question 1. Step by step, trace
the shift-reduce parsing of the expression b && z < 10 showing how the stack and the
input evolve and which actions are performed. (8p)

SOLUTION: The actions are shift, reduce with rule(s), and accept. Stack and
input are separated by a dot.

. b && z < 10 -- shift

Ident . && z < 10 -- reduce with rule EId

Exp3 . && z < 10 -- reduce with coercion rules

Exp . && z < 10 -- shift 2x

Exp && Ident . < 10 -- reduce with rule EId

Exp && Exp3 . < 10 -- reduce with coercion rule

Exp && Exp2 . < 10 -- shift 2x

Exp && Exp2 < Integer . -- reduce with rule EInt

Exp && Exp2 < Exp3 . -- reduce with coercion rule

Exp && Exp2 < Exp2 . -- reduce with rule ELt

Exp && Exp1 . -- reduce with rule EAnd

Exp . -- accept

3

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and blocks of
Question 1. The form of the typing judgements should be Γ `t s⇒ Γ′ where s is a
statement or list of statements, t the return type, Γ is the typing context before s,
and Γ′ the typing context after s. Observe the scoping rules for variables! You can
assume a type-checking judgement Γ ` e : t for expressions e.

Alternatively, you can write the type checker in pseudo code or Haskell (then assume
checkExpr to be defined). In any case, the typing environment and the return type
must be made explicit. (6p)

SOLUTION: A context Γ is a stack of blocks ∆, separated by a dot. Each
block ∆ is a map from variables x to types t. We write ∆, x:t for adding the
binding x 7→ t to the map. Duplicate declarations of the same variable in the same
block are forbidden; with x 6∈ ∆ we express that x is not bound in block ∆. We
refer to a judgement Γ ` e : t, which reads “in context Γ, expression e has type t”.

Γ. `t ss ⇒ Γ.∆

Γ `t {ss} ⇒ Γ

Γ.∆, x:t′ ` e : t′

Γ.∆ `t t′ x = e ;⇒ (Γ.∆, x:t′)
x 6∈ ∆

Γ ` e : t

Γ `t return e;⇒ Γ

Γ ` e : bool Γ. `t s1 ⇒ Γ.∆1 Γ. `t s2 ⇒ Γ.∆2

Γ `t if (e) s1 else s2 ⇒ Γ

This judgement for statements is extended to sequences of statements Γ `t ss ⇒ Γ′

by the following rules (ε stands for the empty sequence):

Γ `t ε⇒ Γ

Γ `t s⇒ Γ′ Γ′ `t ss ⇒ Γ′′

Γ `t s ss ⇒ Γ′′

4

2. Write syntax-directed interpretation rules for the expressions of Question 1. The
form of the evaluation judgement should be γ ` e ⇓ v where e denotes the expression
to be evaluated in environment γ and v the resulting value.

Alternatively, you can write the interpreter in pseudo code or Haskell. A function
lookupVar can be assumed if its behavior is described. In any case, the environment
must be made explicit. (6p)

SOLUTION: The evaluation judgement γ ` e ⇓ v for expressions is the least
relation closed under the following rules.

γ ` i ⇓ i γ ` x ⇓ γ(x)

γ ` e1 ⇓ i1 γ ` e2 ⇓ i2
γ ` e1 + e2 ⇓ i1+i2

γ ` e1 ⇓ i1 γ ` e2 ⇓ i2

γ ` e1 < e2 ⇓
{

1 if i1 < i2
0 otherwise

γ ` e1 ⇓ 0

γ ` e1 && e2 ⇓ 0

γ ` e1 ⇓ 1 γ ` e2 ⇓ b
γ ` e1 && e2 ⇓ b

Herein, environment γ is map from identfiers to integers. Boolean true is represented
by integer 1, and false by 0.

5

Question 5 (Compilation):

1. Translate the example program of Question 1 to Jasmin. It is not necessary to
remember exactly the names of the JVM instructions—only what arguments they
take and how they work. Make clear which instructions come from which statement,
and determine the stack and local variable limits. (8p)

SOLUTION:

.method public static f(ZI)I

.limit locals 4

.limit stack 2

;; int z = x + x;

iload_0

iload_0

iadd

istore_2

;; if (b && z < 10)

iload_1

ifeq LElse

iload_2

bipush 10

if_icmpge LElse

;; int x = z + z;

iload_2

iload_2

iadd

istore_3

;; return x;

iload_3

ireturn

LElse:

;; return 0;

iconst_0

ireturn

.end method

6

2. Give the small-step semantics of the JVM instructions you used in the Jasmin code
in part 1 (except for return instructions). Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S ′)

where (P, V, S) is the program counter, variable store, and stack before execution
of instruction i, and (P ′, V ′, S ′) are the respective values after the execution. For
adjusting the program counter, you can assume that each instruction has size 1.
(6p)

SOLUTION: Stack S.v shall mean that the top value on the stack is v, the rest is
S. Jump targets L are used as instruction addresses, and P + 1 is the instruction
address following P .

instruction state before state after
ifeq L (P, V, S.0) → (L, V, S)
ifeq L (P, V, S.v) → (P + 1, V, S) if v 6= 0
if icmpge L (P, V, S.v.w) → (L, V, S) if v ≥ w
if icmpge L (P, V, S.v.w) → (P + 1, V, S) unless v ≥ w
iload a (P, V, S) → (P + 1, V, S.V (a))
istore a (P, V, S.v) → (P + 1, V [a := v], S)
iconst i (P, V, S) → (P + 1, V, S.i)
bipush i (P, V, S) → (P + 1, V, S.i)
iadd (P, V, S.v.w) → (P + 1, V, S.(v + w))

7

Question 6 (Functional languages):

1. The following grammar describes a tiny simply-typed sub-language of Haskell.

x identifier
i ::= 0 | 1 | −1 | 2 | −2 | . . . integer literal
e ::= i | e+ e | x | λx→ e | e e expression
t ::= Int | t→ t type

Application e1 e2 is left-associative, the arrow t1 → t2 is right-associative. Application
binds strongest, then addition, then λ-abstraction.

For the following typing judgements Γ ` e : t, decide whether they are valid or not.
Your answer can be just “valid” or “not valid”, but you may also provide a justification
why some judgement is valid or invalid.

(a) x : (Int→ Int)→ Int ` λy → y (x y) : (Int→ Int)→ Int
(b) f : (Int→ Int)→ (Int→ Int) ` (λx→ f x) (λf → f) : Int→ Int
(c) f : (Int→ Int)→ Int ` λx→ f (f x) : (Int→ Int)→ Int
(d) g : Int→ Int ` λx→ g (g x+ g 1) : Int→ Int
(e) x : Int, g : Int→ Int ` (λy → g + 0)x : Int

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point
for a wrong answer −1 points. If you choose not to give an answer for a judgement, you
get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative
sum is rounded up to 0. (5p)

SOLUTION:

(a) valid
(b) valid
(c) not valid
(d) valid
(e) not valid (cannot add 0 to function)

8

2. Write a call-by-name interpreter for the functional language above, either with in-
ference rules or in pseudo code or Haskell. (5p)

SOLUTION:

type Var = String
data Exp
= EInt Integer | EPlus Exp Exp

| EVar Var | EAbs Var Exp | EApp Exp Exp

data Val = VInt Integer | VClos Var Exp Env
data Clos = Clos Exp Env
type Env = [(Var,Clos)]

eval :: Exp → Env → Maybe Val

eval e0 rho = case e0 of
EInt n → return (VInt n)
EAbs x e → return (VClos x e rho)

EPlus e f → do
VInt n ← eval e rho

VInt m ← eval f rho

return (VInt (n + m))

EVar x → do
Clos e rho’ ← lookup x rho

eval e rho’

EApp f e → do
VClos x f’ rho’ ← eval f rho

eval f’ ((x, Clos e rho) : rho’)

9

