
Programming Language Technology

Exam, 4 April 2024, 8.30–12.30 in SB-L308

Course codes: Chalmers DAT151, GU DIT231.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 9:30 and 11:30.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Wed 17 April 2024 9.30-10.30 in room EDIT 6128.

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
kinds of constructs of C:

• Program: int main() followed by a block
• Block: a sequence of statements enclosed between { and }

• Statements:
– blocks
– expression followed by semicolon
– initializing single variable declarations, e.g., int x = e;

– loop: while followed by a parenthesized expression and a statement
• Expressions:

– identifiers
– integer literals
– preincrements (++x) and postincrements (x++) of identifiers (x)
– less-than comparison of integer expressions (<)
– boolean conjunction (&&)

Comparison is non-associative and binds stronger than the left-associative conjunc-
tion.

• Types: int and bool

Lines starting with # or // are comments. An example program is:

#include <stdio.h>

#define printInt(i) printf("%d\n",i)

int main ()

{ int n = 0; int k = 0;

while (k++ < 10) { int i = 0; while (i++ < k) n++; }

// printInt(n);

}

You can use the standard BNFC categories Integer and Ident and the coercions,
comment, terminator and separator pragmas.
(10p)

1

Question 2 (Lexing): You roll a dice until you get a six three times in a row. Let L ⊆
Σ∗ be the language of such roll sequences. You can work with the alphabet Σ = {S,N}
where S stands for a six and N for a non-six (one to five).

1. Give a regular expression for language L.

2. Give a non-deterministic finite automation for L.

3. Give a minimal deterministic finite automaton for L.

(6p)

Question 3 (LR Parsing): Consider the following labeled BNF-Grammar (written in
bnfc syntax). The starting non-terminal is D.

D1. D ::= D "|" C ;

D2. D ::= C ;

C1. C ::= C "&" L ;

C2. C ::= L ;

LA. L ::= "A" ;

LB. L ::= "B" ;

LN. L ::= "~" L ;

LP. L ::= "(" D ")" ;

Step by step, trace the shift-reduce parsing of the expression

~ A & ~ ~ B | A

showing how the stack and the input evolves and which actions are performed. (8p)

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the expression forms of Question 1.
Alternatively, you can write the type checker in pseudo code or Haskell. (E.g., Java
is not pseudo code!) In any case, the typing environment must be made explicit.
(6p)

2. Write syntax-directed interpretation rules for the expressions of Question 1.

Alternatively, you can write the interpreter in pseudo code or Haskell. In any case,
the environment must be made explicit. (7p)

Question 5 (Compilation):
1. Statement by statement, translate the function main of the example program of
Question 1 to Jasmin. (Do not optimize the program before translation!)

Make clear which instructions come from which statement, and determine the stack
and local variable limits. Please remember that JVM methods must end in a return
instruction. (7p)

2

2. Give the small-step semantics of the JVM instructions you used in the Jasmin code
in part 1 (except for return instructions). Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S ′)

where (P, V, S) is the program counter, variable store, and stack before execution of
instruction i, and (P ′, V ′, S ′) are the respective values after the execution. For adjusting
the program counter, assume that each instruction has size 1. (6p)

Question 6 (Functional languages):

1. The following grammar describes a tiny simply-typed sub language of Haskell.

x identifier
n ::= 0 | 1 | −1 | 2 | −2 | . . . numeral
e ::= n | e+ e | x | λx → e | e e expression
t ::= Int | t → t type

Application e1 e2 is left-associative, the arrow t1 → t2 is right-associative. Application
binds strongest, then addition, then λ-abstraction.

For the following typing judgements Γ ⊢ e : t, decide whether they are valid or not.
Your answer can be just “valid” or “not valid”, but you may also provide a justification
why some judgement is invalid.

(a) k : (Int → Int) → Int ⊢ k (λf → f) + 1 : Int
(b) x : Int → Int, g : Int ⊢ x (y + 1) : Int
(c) f : (Int → Int) → (Int → Int) ⊢ (λi → f i) (λy → f (λh → h) y) : Int → Int
(d) h : Int → Int ⊢ λy → λh → (h+ 1) + y : Int → (Int → Int)
(e) x : Int → Int ⊢ λf → f (1 + f (f x)) : (Int → Int) → Int

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point
for a wrong answer −1 points. If you choose not to give an answer for a judgement, you
get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative
sum is rounded up to 0. (5p)

2. For each of the following terms, decide whether it evaluates more efficiently (in the
sense of fewer reductions) in call-by-name or call-by-value. Your answer can be just “call-
by-name” or “call-by-value”, but you can also add a justification why you think so. Same
rules for multiple choice as in part 1. (5p)

(a) (λx → λy → y + y) (λu → (λz → z z)(λz → z z)) (1 + 2 + 3 + 4)
(b) (λx → λy → x+ x) (1 + 2 + 3 + 4) (5 + 6)
(c) (λx → x+ x) ((λy → λz → z + z) (1 + 2 + 3) (4 + 5 + 6))
(d) (λx → λy → y + y) ((λz → z z)(λz → z z)) (1 + 2 + 3)
(e) (λx → λy → x+ x) (1 + 2) (3 + 4 + 5 + 6)

3

