
Programming Language Technology

Exam, 11 January 2024, 8.30–12.30 at Johanneberg Campus

Course codes: Chalmers DAT151, GU DIT231.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 9:30 and 11:30.

Grading scale: Max = 60p, MVG = 5 = 48p, VG = 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Thu 18 January 2024 14.30-15.30 in room EDIT 3128.

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
kinds of constructs of C:

• Program: int main() followed by a block
• Block: a sequence of statements enclosed between { and }

• Statement:
– statement formed from an expression by adding a semicolon ;

– initializing variable declarations, e.g., int x = e;

– assignment, e.g., x = e;

– loop: while followed by a parenthesized expression and a block
• Atomic expression:

– identifier
– integer literal
– function call with a single argument
– pre-increment of identifier, e.g., ++x
– parenthesized expression

• Expression (from highest to lowest precedence):
– atomic expression
– addition (+), left-assocative
– less-than comparison of integer expressions (<), non-associative

• Type: int or bool
Lines starting with # are comments. An example program is:

#include <stdio.h>

#define printInt(i) printf("%d\n",i)

int main ()

{ int n = 42; int i = 0; int k = 0;

while (k < 101) { n = k; k = n + ++i; }

printInt(n);

}

You can use the standard BNFC categories Integer and Ident and the coercions

pragma. Do not use list categories via the terminator and separator pragmas!
(10p)

1

Question 2 (Lexing): An non-nested C block comment starts with /* and ends with
*/ and can have any characters in between (but not the comment-end sequence */ of
course). Also, /*/ is not a valid comment.

1. Give a deterministic finite automaton for such comments with no more than 8
states. Remember to mark initial and final states appropriately.

2. Give a regular expression for such comments.

Work in the alphabet {S,A, c} distinguishing 3 tokens: S for ’/’, A for ’*’, and c where
c stands for any other character. (6p)

Question 3 (LR Parsing): Consider the following labeled BNF-Grammar (written in
bnfc syntax). The starting non-terminal is S.

Start. S ::= M P ;

MEmp. M ::= ;

MBin. M ::= M A "*" ;

PEmp. P ::= ;

PBin. P ::= A "+" P ;

X. A ::= "x" ;

Y. A ::= "y" ;

Step by step, trace the shift-reduce parsing of the expression

x * y * y + x +

showing how the stack and the input evolves and which actions are performed. (8p)

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and blocks of
Question 1. Observe the scoping rules for variables! You can assume a type-
checking judgement for expressions.

Alternatively, you can write the type checker in pseudo code or Haskell. In any
case, the typing environment must be made explicit. (8p)(7p)

2. Write syntax-directed interpretation rules for the expressions of Question 1. You
can leave out function calls.

Alternatively, you can write the interpreter in pseudo code or Haskell. A function
lookupVar can be assumed if its behavior is described. In any case, the environment
must be made explicit. (6p)(5p)

2

Question 5 (Compilation):
1. Statement by statement, translate the function main of the example program of
Question 1 to Jasmin. (Do not optimize the program before translation!)

To translate the call to printInt, assume a Java class Runtime with a method void

printInt(int).
Make clear which instructions come from which statement, and determine the stack

and local variable limits. Please remember that JVM methods must end in a return
instruction. (7p)
2. Give the small-step semantics of the JVM instructions you used in the Jasmin code
in part 1 (except for return instructions). Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S ′)

where (P, V, S) is the program counter, variable store, and stack before execution of
instruction i, and (P ′, V ′, S ′) are the respective values after the execution. For adjusting
the program counter, assume that each instruction has size 1. (7p)

Question 6 (Functional languages):

1. The following grammar describes a tiny simply-typed sub language of Haskell.

x identifier
n ::= 0 | 1 | −1 | 2 | −2 | . . . numeral
e ::= n | e+ e | x | λx → e | e e expression
t ::= Int | t → t type

Application e1 e2 is left-associative, the arrow t1 → t2 is right-associative. Application
binds strongest, then addition, then λ-abstraction.

For the following typing judgements Γ ⊢ e : t, decide whether they are valid or not.
Your answer can be just “valid” or “not valid”, but you may also provide a justification
why some judgement is invalid.

(a) x : Int → Int, g : Int ⊢ x (y + 1) : Int
(b) h : Int → Int ⊢ λy → λh → (h+ 1) + y : Int → (Int → Int)
(c) k : (Int → Int) → Int ⊢ k (λf → f) + 1 : Int
(d) x : Int → Int ⊢ λf → f (1 + f (f x)) : (Int → Int) → Int
(e) f : (Int → Int) → (Int → Int) ⊢ (λi → f i) (λy → f (λh → h) y) : Int → Int

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point
for a wrong answer −1 points. If you choose not to give an answer for a judgement, you
get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative
sum is rounded up to 0. (5p)

2. For each of the following terms, decide whether it evaluates more efficiently (in the
sense of fewer reductions) in call-by-name or call-by-value. Your answer can be just “call-
by-name” or “call-by-value”, but you can also add a justification why you think so. Same
rules for multiple choice as in part 1. (5p)

(a) (λx → λy → x+ x) (1 + 2) (3 + 4 + 5 + 6)
(b) (λx → λy → x+ x) (1 + 2 + 3 + 4) (5 + 6)
(c) (λx → λy → y + y) ((λz → z z)(λz → z z)) (1 + 2 + 3)
(d) (λx → λy → y + y) (λu → (λz → z z)(λz → z z)) (1 + 2 + 3 + 4)
(e) (λx → x+ x) ((λy → λz → z + z) (1 + 2 + 3) (4 + 5 + 6))

3

