
Programming Language Technology

Exam, 08 April 2021 at 08.30 – 12.30 on Canvas

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150 and DIT230.
Exam supervision: Andreas Abel. Questions may be asked in Zoom breakout room, by
email (mailto:andreas.abel@gu.se, subject: PLT exam) or telephone (+46 31 772
1731).

Exam review: Modalities will be announced later.
Allowed aids:

• All exam questions have to be solved individually.

• No communication of any form is permitted during the exam, including conversa-
tion, telephone, email, chat, asking questions in internet fora etc.

• All course materials can be used, including the book, lecture notes, previous exam
solutions, own lab solution, etc. Any material copied verbatim should be marked
as quotation with reference to the source.

• Publicly available documentation on the internet may be consulted freely to prepare
the solution. Small portions of code and text from publicly available resources may
be reused in the solution if clearly marked as quotation and properly referencing
the source.

Any violation of the above rules and further common sense rules applicable to an ex-
amination, including plagiarism or sharing solutions with others, will lead to immediate
failure of the exam (grade U), and may be subject to further persecution.
Grading scale: VG = 5, G = 4/3, U.

To pass, you need to deliver complete answers to two out of questions 1-3. (Typos,
bugs, and minor omissions are not a problem as long as your answer demonstrates good
understanding of the subject matter.) For a Chalmers grade 4 you need complete answers
to all of the questions 1-3. A VG/5 requires excellent answers on questions 1-3.

Submission instructions:

• Please answer the questions in English.

• The solutions need to be submitted as one .zip archive, named according to schema
FirstName LastName Personnummer.zip. Checklist:

– Lovelace.cf
– Sum.adb
– Question2.{txt|md|pdf|...}
– Question3.{txt|md|pdf|...}
– (other relevant files)

1

mailto:andreas.abel@gu.se

In the following, a fragment Lovelace of the Ada programming language is described,
in its syntax and semantics. Two example programs, Primes.adb and Factorial.adb
are included to clarify the specification. In the exam, you are asked to describe a grammar,
a type checker, and a compiler for Lovelace.

1. A program consists of:

(a) imports, in Lovelace fixed to the two lines

with Ada.Integer_Text_IO;

use Ada.Integer_Text_IO;

(b) main header: procedure identifier is

(c) a list of function definitions,

(d) a list of main variable declarations,

(e) a main block.

Running a program will execute the variable declarations and the statements of the
block (from which functions can be called).

2. A variable declaration is a non-empty comma-separated list of identifiers followed by
a colon, a type, colon-equals, an initializing expression, and a semicolon. The scope
of the initializing expression are the functions and variables declared before, not in-
cluding the variable(s) we are just initializing. Note: If we declare several variables,
the initializing expression is evaluated again for each variable.

3. A type is Integer or Boolean.

4. A function definition consists of:

(a) header: function identifier parenthesized-parameters return type is,

(b) a list of local variable declarations,

(c) body: a block for the function, terminated by a semicolon.

The parameters are a non-empty semicolon-separated list of parameter declarations
each of which consists of: identifier colon type.

A function needs to be called (see function call expression) with the correct number
of arguments of the correct type. The call will execute the block with parameters
initialized to their respective argument value and local variables initialized to their
value (see 2.). The execution of the function ends when a return statement is
encountered.

The joint list of parameters and local variables may not have any duplicates.

5. A block for a function or procedure with name identifier is started by keyword
begin and ended by end identifier semicolon. In between is a non-empty list of
statements, each terminated by a semicolon.

6. A statement can be one of the following. The typing and execution of the statements
is like in C/C++/Java unless noted otherwise.

2

(a) A return statement: return expression. Returns from the current function
with the value of the expression.

(b) An assignment: identifier colon-equals expression.

(c) A conditional: if expression then statements, optionally followed by else
statements, terminated by end if.

(d) A while-loop: while expression loop statements end loop.

(e) A for-loop: for identifier in expression dot-dot expression loop statements
end loop. The for-loop declares a new variable identifier of type Integer, the
so-called loop variable. This variable is only in scope in the statements and it
may shadow other variables. The first expression denotes the initial value of
the loop variable and the second expression the final value. Both values are
integers and computed before the loop starts. If the final value is below the
initial value, the loop is not executed. Otherwise, the loop variable is set to the
initial value. The statement is executed, and the loop variable is incremented
by one. The actions of the previous sentence are repeated as long as the loop
variable is not larger than the final value.

(f) A print statement: put followed by a parenthesized expression of type Integer.
Prints the value and a newline character to the standard output.

7. An expression can be one of the following. Typing and interpretation of expressions
is like in C/C++/Java unless noted otherwise.

(a) A variable: identifier.

(b) A boolean constant true or false or an integer literal .

(c) An integer literal.

(d) A function call : identifier followed by a parenthesized non-empty comma-
separated list of expressions.

(e) A parenthesized expression.

(f) A infix binary operation: expression operator expression. All operators are
left associative. Operators come in four binding strengths:

i. Multiplicative operators, bind strongest:

• integer multiplication *,

• integer division div,

• integer remainder mod.

ii. Additive operators, next in binding strength:

• integer addition +,

• integer subtraction -.

iii. Relational operators, but-last in strength: Equality operators = (equal)
and /= (not equal) and integer comparison operators <, <=, >, and >=
with the usual meaning.

iv. Short-circuiting logical operators, least in binding strength:

v. boolean conjunction and then,

vi. boolean disjunction or else.

3

Operators are always applied to two expression of the same type. Equality
operators apply to booleans and to integers. Like in C/C++/Java, boolean
conjunction and disjunction are short-circuiting, i.e., if the left operand deter-
mines the value of the operation, the right operand is not evaluated.

8. An identifier starts with a letter, followed by a possibly empty sequence of letters,
digits, and underscores. (Note: this is different from BNFC’s Ident token type.)

9. An integer literal is a non-empty sequence of digits.

Comments start with double-dash (--) and last until the end of the line.
An identifier is never in scope before its declaration. The detailed scoping rules are:

1. Functions are in scope after their declaration: in their own body, in functions
defined later, and in the main block. There is no mutual recursion. All functions
must have distinct names.

2. The parameters and local variables of a function must be distinct. They are only
in scope in the corresponding initializing expressions (see above) and the function
body. They may shadow function identifiers.

3. The main variables (as well as all functions) are in scope in the main block. The
names of the main variables must be distinct from each other and from the functions.

-- Factorial.adb

with Ada.Integer_Text_IO;

use Ada.Integer_Text_IO;

procedure Factorial is

function factorial (n : Integer) return Integer is

begin

if n < 2 then

return 1;

else

return n * factorial(n - 1);

end if;

end factorial;

n : Integer := 7;

begin

put(factorial(n));

end Factorial;

4

-- Primes.adb

with Ada.Integer_Text_IO;

use Ada.Integer_Text_IO;

procedure Primes is

function prime (n : Integer) return Boolean is

i : Integer := 3;

begin

if n <= 2 then return (n = 2); end if;

if n mod 2 = 0 then return false; end if;

while i * i <= n loop

if n mod i = 0 then return false; end if;

i := i + 2;

end loop;

return true;

end prime;

-- Test 100 numbers for primality, starting with 1.

lower : Integer := 1;

upper : Integer := 100 + lower - 1;

begin

for n in lower .. upper loop

if prime(n) then

put(n);

end if;

end loop;

end Primes;

Question 1 (Grammar)

1. Write an Lovelace program Sum.adb that computes and prints the sum of the
integers from 1 to 100. This program should contain a function sum with two
integer parameters determining the range (e.g. “from 1 to 100”), and the main
block should call this function with arguments 1 and 100.

2. Write a labelled BNF grammar for Lovelace in a file Lovelace.cf and create a
parser from this grammar using BNFC. For the best evaluation, the parser should
be free of conflicts (shift/reduce and reduce/reduce).

3. Recommended: Test your parser on Primes.adb, Factorial.adb and Sum.adb.

Deliverables: files Lovelace.cf and Sum.adb.

5

Question 2 (Type checker): Write a specification of a type checker for the Lovelace
language of Question 1. The type checker receives an abstract syntax tree of a Lovelace
program and shall throw an error if any of the scoping or typing rules are violated.

Deliverable: submit a text document with name Question2 (plus file extension)
that contains the specification. The text document can be a plain text file possibly using
markup (like markdown) or a PDF.

The specification should have the following structure:

A. State. Describe the components of the state of the type checker and how these
components are implemented, i.e., which data structure (like list, map, integer...)
is used for each component.

B. Initialization and run: Describe how the state is initialized and how the type checker
(C) is started (i.e., which arguments are given to the type checker).

C. Syntax-directed traversal: Describe the type checker: Write an explanation how each
relevant Lovelace construct (expression, statement, block, declaration, ...) is checked
(or its type inferred). You may use judgements and rules or pseudo-code or precise
language.

D. API (optional): If you used helper functions to manipulate the state in item C,
describe them here.

The specification can use the names from your BNFC grammar.
The specification should be written in a high-level but self-contained way so that an

informed outsider can implement the type checker easily following your specification. An
informed outsider shall be a person who has very good programming skills and good
familiarity with programming language technology in general, but no specific knowledge
about the Lovelace language nor access to the course material.

The specification will be judged on clarity and correctness.

6

Question 3 (Compilation): Specify a compiler from Lovelace to JVM. The
compiler takes a type-correct abstract syntax tree of a Lovelace program as input and
translates this into Jasmin method definitions which are printed to the standard output.

Deliverable: submit a text document with name Question3 (plus file extension)
that contains the specification. Instructions analogous to Question 2 apply. In particular,
follow the same structure: A. State, B. Initialization and run, C. Compilation schemes,
D. API.

Restrictions of the task:

1. The compiler does not have to output a full Jasmin class file, only the methods
corresponding to the defined Lovelace functions and a main method for the main
block. (You may assume that no Lovelace function is called main.)

2. You need not output .limit pragmas (stack/locals).
3. You may simply use the Lovelace function identifiers for the corresponding Jasmin

method names.
4. You can assume a Java method that can be called to output an integer.
5. You need not care about Java modifiers like public or static.
6. It is sufficient to treat one logical, one arithmetical, and one comparison operator.
7. Choose one of if-then or if-then-else or while.

However, the compiler needs to output proper JVM instructions (not pseudo machine
code).
Good luck!

7

